Структурная единица скелетной мышечной. Названия скелетных мышц

Мышечная система отвечает за движение человеческого тела. Прикреплено к костям около 700 мышц, которые составляют примерно половину массы тела человека. Каждая из этих мышц является дискретным органом, выполненным из ткани скелетных мышц, кровеносных сосудов, сухожилий и нервов. Мышечная ткань также находится внутри сердца, органов пищеварения и кровеносных сосудов. В этих органах она служит для транспортировки веществ … [Читайте ниже]

  • Голова и шея
  • Грудь и верх спины
  • Живот, поясница и таз
  • Ноги и стопы
  • Мышцы рук и кистей

[Начало сверху] …

Типы мышечных тканей

Есть три вида мышечной ткани: висцеральные, мышцы сердца и скелета.
Висцеральные — находятся внутри органов, таких как желудок, кишечник и кровеносные сосуды. Самые слабые из всех мышц внутренних органов, служат для перемещения веществ. Висцеральные мышцы не могут непосредственно контролироваться сознанием. Термин «гладкая» используется для висцеральной мышцы, так как она имеет гладкую структуру, однородный вид (если смотреть под микроскопом). Её внешний вид резко контрастирует с сердечной и скелетными мышцами.
Сердечная мышца расположена только в сердце, она отвечает за перекачивание крови по всему телу. Сердечная мышца не контролируется сознательно. В то время как гормоны и сигналы мозга могут регулировать скорость сжатия сердечной мышцы, стимулируя сокращение. Естественный стимулятор биения сердца — сердечная мышечная ткань, которая заставляет другие клетки сокращаться.
Клетки сердечной мышечной ткани являются поперечно — полосатыми, то есть, они представляют из себя светлые и темные полосы, если смотреть под световым микроскопом. Расположение белковых волокон внутри клеток вызывает эти светлые и темные полосы. Мышечная клетка очень сильна, в отличие от висцеральной.
Клетки сердечной мышцы являются разветвленными или X Y формы, клетки плотно соединены между собой специальными переходами, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидной проекции двух соседних ячеек, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому давлению крови и напряжению при перекачке крови в течение всей жизни. Эти функции также способствуют быстрому распространению электрохимических сигналов от клетки к клетке так, что сердце может биться как единое целое.

Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется. Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.
Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна. Исчерчены каркасные мышцы так же, как и сердечная, поэтому они очень сильны. Скелетная мышца получает свое название от того, что она всегда подключаются к скелету, по крайней мере, в одном месте.

Анатомия скелетных мышц

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Названия скелетных мышц

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Местоположение

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Происхождение

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.

Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

Форма, размер и направление

Также важно классифицировать мышцы по форме. Например, дельтовидные имеют дельта — или треугольную форму. Зубчатые имеют зубчатую или пилообразный форму. Ромбовидные — обладают формой ромба.
Размер может быть использован, чтобы различать два типа мышц, найденных в одном и том же регионе. Область ягодичной части содержит три мышцы, дифференцированные по размеру: ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Функции мышечной ткани человека

Мышцы иногда классифицируют по типу функции, которую они выполняют. Большинство мышц предплечья именуются в зависимости от их функций, потому что они расположены в том же регионе и имеют одинаковые формы и размеры. Например, сгибатели предплечья сгибают запястья и пальцы.
Супинатор — это мышца, которая поднимает запястье ладонью вверх. В ноге есть такие, которые называются аддукторами, чья роль заключается в стягивании ног.

Инициативные группы в скелетных мышцах

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте. В качестве антагониста для этого движения — трехглавая плеча — расширяет руку в локте. Когда трицепсы расширяют руку, бицепс будет считаться антагонистом.

В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.
Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Гистология скелетной мускулатуры

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна. Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 +), которые имеют жизненно важное значение для сокращения мышц.
Митохондрии , движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки. Миофибриллы составлены из многих белковых волокон, расположенных в повторяющихся субъединицах, называемых саркомерами. Саркомера является функциональной единицей мышечных волокон.

Структура саркомера

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Толстые нити состоят из множества соединенных звеньев белка миозина. Миозин является белком, который вызывает мышцы сокращаться.
Тонкие нити состоят из трех белков:

Актин.
Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.
Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.
Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Функции мышечной ткани

Основной функцией мышечной системы является движение . Мышцы являются единственной тканью в организме, что имеет возможность перемещать другие части тела.
Связанная с функцией движения является вторая функция мускульной системы: поддержание позы и положения тела . Мышцы зачастую держат тело неподвижно или в определенном положении, а не вызывают движение. Мышцы, отвечающие за положение тела имеют наивысшую выносливость — они выполняют свои функции в течение всего дня, не становясь усталыми.
Еще одна функция, связанная с движением является движение веществ внутри тела . Сердечные и висцеральные мышцы, в первую очередь, ответственны за транспортировку веществ, таких как кровь или питательные вещества из одной части тела в другую.

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Скелетная мускулатура в роли рычага

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

Двигательные единицы мышц

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.
Размер двигательных единиц изменяется по всему телу, в зависимости от функции. Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 + высвобождаются и протекают в миофибриллы. Ионы Са2 + связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Типы мышечных сокращений

Силой сжатия мышц можно управлять двумя факторами: количеством двигательных единиц (нейронов), участвующих в сокращении и количеством импульсов от нервной системы. Один нервный импульс моторного нейрона вызовет краткое напряжение группы мышц, а затем заставит расслабиться. Если двигательный нейрон обеспечивает несколько сигналов в течение короткого периода времени, то сила и продолжительность сжатия увеличивается. Если двигательный нейрон обеспечивает много нервных импульсов в быстрой последовательности, мышца может войти в состояние полного и прочного сокращения. Мышца останется в сжатом положении, пока скорость сигнала нерва не замедлится или до тех пор, пока мышца станет слишком усталой, чтобы поддерживать напряжение.

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений. Сужения мышц, что действительно производит движение является изотоническими сокращениями. Изотонические сокращения необходимы для наращивания мышечной массы за счет подъема веса.

Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

Функциональные типы скелетных мышечных волокон

Cкелетные мышечные волокона, можно разделить на два типа в зависимости от того, как они производят и используют энергию:

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.
Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Мышечный метаболизм и усталость

Мышцы получают энергию из различных источников, в зависимости от ситуации, в которой мышца работает. Мышцы способны использовать аэробное дыхание, когда необходимо произвести от низкого до умеренного уровня силы упражнения. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробные дыхания является очень эффективным и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы. Когда мы используем мышцы, чтобы произвести высокий уровень силы, они становятся настолько плотными, что находящийся кислород в крови не может войти в мышцу. Это условие приводит к тому, что мышцы используют для выработки энергии брожение молочной кислоты (форма анаэробного дыхания). Анаэробное дыхание менее эффективно аэробного дыхания — только 2 АТФ производится из каждой молекулы глюкозы.
Для того, чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин , красный пигмент содержащийся в мышцах, содержит железо и сохраняет кислород в манере, подобной гемоглобину крови. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствии кислорода. Другой химикат, который помогает мышцам работать — креатинфосфат . Мышцы используют энергию в виде АТФ, происходит превращение АТФ в АДФ, чтобы выпустить свою энергию. Креатинфосфат жертвует свою фосфатную группу АДФ, чтобы включить её в АТФ, с тем, чтобы обеспечить дополнительную энергию для мышц. Наконец, мышечные волокна содержат энергию аккумулирующих гликогенов, больших макромолекул, изготовленных из множества связанной между собой глюкозы. Активные мышцы отщепляют глюкозу от молекул гликогена, чтобы обеспечить внутренний запас топлива.

Мышечная усталость

Когда мышцы исчерпали энергию во время аэробного или анаэробного дыхания, то быстро утомляются и теряют способность сокращаться. Это состояние известно как мышечная усталость . Утомление мышц не говорит о содержании очень малого количества или отсутствия кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов — отходов дыхания, таких как молочная кислота и АДФ. Тело должно принимать дополнительное количество кислорода после физической нагрузки, чтобы заменить кислород, который находился в миоглобине мышечных волокон, а также для питания аэробного дыхания, которое обеспечивает поставки энергии внутри клетки. Восстановление потребления кислорода (кислородное голодание) — это восприятие дополнительного кислорода, который организм должен принять, чтобы восстановить мышечные клетки, их привести в состояние покоя. Это объясняет, почему появляется одышка в течение нескольких минут после напряженной деятельности — ваше тело пытается восстановить себя в нормальное состояние.

Создано 24.03.2016

Пожалуй, нельзя начать занятия силовыми тренировками, не зная названия мышц и где они находятся.

Ведь знание строения тела и понимание смысла и структуры тренировок значительно повышает результативность силового тренинга.

Виды мышц

Есть три вида мышечной ткани:

гладкие мышцы

Гладкие мышцы образуют стенки внутренних органов, дыхательных проходов и кровеносных сосудов. Медленные и однообразные движения гладких мышц продвигают вещества через органы (например, продукты питания через желудок или мочу через мочевой пузырь). Гладкие мышцы непроизвольные, то есть работают независимо от нашего сознания, непрерывно в течение всей жизни.

сердечная мышца (миокард)

Отвечает за перекачивание крови по всему телу. Также, как и гладкие мышцы, не может контролироваться сознательно. Сердечная мышца быстро сокращается и интенсивно работает всю жизнь.

скелетные (поперечно-полосатые) мышцы

Единственная мышечная ткань, которая управляется сознанием. Скелетных мышц более 600 и они составляют около 40 процентов от массы тела человека. У пожилых людей масса скелетных мышц уменьшается до 25-30%. Однако, при регулярной высокой мышечной активности масса мышц сохраняется до глубокой старости.

Основная функция скелетных мышц: приводить кости в движение и поддерживать позу и положение тела. Мышцы, ответственные за поддержание позы тела, имеют наибольшую выносливость из всех мышц в теле. Кроме того, скелетные мышцы выполняют терморегуляционную функцию, являясь источником тепла.

Строение скелетных мышц

Мышечная ткань содержит множество длинных волокон (миоцитов), соединенных в пучок (от 10 до 50 миоцитов в одном пучке). Из этих пучков формируется брюшко скелетной мышцы. Каждый пучок миоцитов, также как и сама мышца, покрыт плотной оболочкой из соединительной ткани. На концах оболочка переходит в сухожилия, которые прикрепляются к костям в нескольких точках.

Между пучками мышечных волокон проходят кровеносные сосуды (капилляры) и нервные волокна.

Каждое волокно состоит из более мелких нитей - миофибрилл. Они состоят из еще более мелких частиц, называемых саркомерами. Они произвольно сокращаются под воздействием нервных импульсов, посылаемых от головного и спинного мозга, производя движение суставов. Хотя наши движения находятся под нашим сознательным контролем, мозг может узнать паттерны движений, так что мы можем выполнять определенные задачи, такие как ходьба, не думая.

Силовые тренировки способствуют увеличению количества миофибрилл мышечного волокна и их поперечного сечения. Сначала увеличивается сила мышцы, а затем - её толщина. Но количество самих мышечных волокон не меняется и оно заложено генетически. Отсюда вывод: те, у кого мышцы состоят из большего количества волокон, имеют больше шансов увеличить толщину мышц силовыми тренировками, нежели те, у кого мышцы содержат меньше волокон.

Толщина и количество миофибрилл (поперечное сечение мышцы) определяет силу скелетной мышцы. Показатели силы и мышечной массы возрастают не одинаково: когда мышечная масса увеличивается в два раза, то сила мышц становится в три раза больше.

Есть два типа волокон скелетной мышцы:

  • медленные (ST-волокна)
  • быстрые (FT-волокна)

Медленные волокна также называют красными, поскольку они содержат большое количество белка красного цвета - миоглобина. Эти волокна выносливые, но работают с нагрузкой в пределах 20-25% от максимальной силы мышц.

Быстрые волокна содержат мало миоглобина и поэтому их еще называют белыми. Они сокращаются в два раза быстрее медленных волокон и способны развить силу в десять раз больше.

Когда нагрузка меньше 25% от максимальной мышечной силы, работают медленные волокна. А когда наступает их истощение, работать начинают быстрые волокна. Когда будет израсходована и их энергия, наступает истощение и мышце требуется отдых. Если нагрузка сразу большая, то оба вида волокон работают одновременно.

Разные типы мышц, выполняющие разные функции, имеют разное соотношение быстрых и медленных волокон. Например, бицепс содержит больше быстрых волокон, чем медленных, а камбаловидная мышца состоит в основном из медленных. Какой тип волокон будет преимущественно задействован в работе в данный момент зависит не от скорости выполнения движения, а от усилия, которое необходимо на него потратить.

Соотношение быстрых и медленных волокон в мышцах каждого человека заложено генетически и неизменно всю жизнь.

Скелетные мышцы получили свои названия исходя из формы, расположения, количества мест прикрепления, места присоединения, направления мышечных волокон, функций.

Классификация скелетных мышц

по форме

  • веретенообразная
  • квадратная
  • треугольная
  • лентовидная
  • круговая

по числу головок

  • двуглавая
  • трехглавая
  • четырехглавая

по числу брюшек

  • двубрюшная

по направлению мышечных пучков

  • одноперистая
  • двуперистая
  • многоперистая

по функции

  • сгибатель
  • разгибатель
  • вращатель-подниматель
  • сжиматель (сфинктер)
  • отводящая (абдуктор)
  • приводящая (аддуктор)

по расположению

  • поверхностная
  • глубокая
  • медиальная
  • латеральная

Скелетные мышцы человека разделяют на большие группы. Каждая большая группа делится на мышцы отдельных областей, которые могут быть расположены слоями. Все скелетные мышцы парные и расположены симметрично. Лишь диафрагма является непарной мышцей.

головы

туловища

  • мышцы шеи
  • мышцы спины
  • мышцы груди
  • диафрагма
  • мышцы живота
  • мышцы промежности

конечностей

  • мышцы плечевого пояса
  • мышцы плеча
  • мышцы предплечья
  • мышцы кисти

  • мышцы таза
  • мышцы бедра
  • мышцы голени
  • мышцы стопы

Скелетные мышцы по отношению к суставам расположены не одинаково. Расположение определяется их строением, топографией и функцией.

  • односуставные мышцы - прикреплены к смежным костям и действуют только на один сустав
  • двусуставные, многосуставные мышцы - перекидываются через два и более суставов

Многосуставные мышцы, как правило, длиннее односуставных и расположены более поверхностно. Эти мышцы начинаются на костях предплечья или голени и прикрепляются к костям кисти или стопы, к фалангам пальцев.

Скелетные мышцы имеют многочисленные вспомогательные аппараты:

  • фасции
  • фиброзные и синовиальные влагалища сухожилий
  • синовиальные сумки
  • блоки мышц

Фасция - соединительная оболочка, образующая чехол мышцы.

Фасции разделяют отдельные мышцы и группы мышц друг от друга, выполняют механическую функцию, облегчая работу мышц. Как правило, мышцы соединены с фасциями с помощью соединительной ткани. Некоторые мышцы начинаются от фасции и прочно с ними сращены.

Строение фасций зависит от функции мышц и от силы, которую испытывает фасция при сокращении мышцы. Где мышцы хорошо развиты, фасции более плотные. Мышцы, которые несут небольшую нагрузку, окружены рыхлой фасцией.

Синовиальное влагалище отделяет движущееся сухожилие от неподвижных стенок фиброзного влагалища и устраняет их взаимное трение.

Также устраняют трение синовиальные сумки, которые имеются в зонах, где сухожилие или мышца перекидывается через кость, через соседнюю мышцу или в месте контакта двух сухожилий.

Блок является точкой опоры для сухожилия, обеспечивая постоянное направление его движения.

Скелетные мышцы редко работают сами по себе. Чаще всего они работают в группах.

4 типа мышц по характеру их действия:

агонист - непосредственно выполняет какое-либо конкретное движение определенной части тела и несет основную нагрузку при этом движении

антагонист - выполняет противоположное движение по отношению к мышце агонисту

синергист - включается в работу вместе с агонистом и помогает ему ее совершать

стабилизатор - удерживают остальную часть тела при выполнении движения

Синергисты находятся на стороне агонистов и/или неподалеку от них. Агонисты и антагонисты обычно расположены на противоположных сторонах костей рабочего сустава.

Сокращение агониста может привести к рефлекторному расслаблению ее антагониста - взаимное торможение. Но это явление происходит не при всех движениях. Иногда возникает совместное сжатие.

Биомеханические свойства мышц:

Сократимость - способность мышцы сокращаться при возбуждении. Мышца укорачивается и возникает сила тяги.

Сокращение мышц происходит по разному:

-динамическое сокращение - напряжение в мышце, которое изменяет ее длину

Благодаря этому и совершаются движения в суставах. Динамическое сокращение мышц бывает концентрическим (мышца укорачивается) и эксцентрическим (мышца удлиняется).

-изометрическое сокращение (статическое) - напряжение в мышце, при котором ее длина не меняется

При возникающем напряжении в мышце в суставе не происходит никакого движения.

Упругость - способность мышцы восстанавливать первоначальную длину после устранения деформирующей силы. При растяжении в мышце возникает энергия упругой деформации. Чем больше растянута мышца, тем больше энергии в ней запасено.

Жесткость - способность мышцы противодействовать прикладываемым силам.

Прочность - определяется величиной растягивающей силы, при которой происходит разрыв мышцы.

Релаксация - свойство мышцы, которое проявляется в постепенном уменьшении силы тяги при постоянной длине мышцы.

Силовые тренировки способствуют росту мышечной ткани и увеличивают силу скелетных мышц, улучшают работу гладких мышц и сердечной мышцы. За счет того, что сердечная мышца работает более интенсивно и эффективно, улучшается кровоснабжение не только всего организма, но и самих скелетных мышц. Благодаря этому они способны переносить больше нагрузки. Хорошо развитые, благодаря тренировкам, мышцы обеспечивают лучшую поддержку внутренних органов, что благотворно влияет на нормализацию пищеварения. В свою очередь, хорошее пищеварение обеспечивает питание всех органов, и в частности мышц.

Функции скелетных мышц и упражнения для тренировки

Мышцы верхней части тела

Двуглавая мышца плеча (бицепс) - сгибает руку в локте, проворачивает кисть наружу, напрягает руку в локтевом суставе.

Упражнения с сопротивлением: все типы сгибаний рук; движения при гребле.

Подтягивание на перекладине, лазанье по канату, гребля.

Большая грудная мышца: ключичная грудинная (грудь) - приводит руку вперед, внутрь, вверх и вниз.

Упражнения с сопротивлением: жимы лежа под любым углом, разведение рук лежа, отжимания от пола, тяги над головой, отжимания на брусьях, скрещивания рук на блоках.

Грудино-ключично-сосцевидная мышца (шея) - наклоняет голову в стороны, поворачивает голову и шею, наклоняет голову вперед и назад.

Упражнения с сопротивлением: упражнения с головными лямками, борцовский мост, упражнения с сопротивлением партнера и самосопротивлением.

Борьба, бокс, футбол.

Клювоплечевая мышца - поднимает руку к плечу, подтягивает руку к телу.

Упражнения с сопротивлением: разведения, подъемы рук вперед, жим на скамье лежа.

Метания, боулинг, борьба на руках.

Плечевая мышца (плечо) - приводит предплечье к плечу.

Упражнения с сопротивлением: все типы сгибаний рук, сгибание обратным хватом, движения гребкового типа.

Подтягивание, лазанье по канату, борьба на руках, тяжелая атлетика.

Группа мышц предплечья : плечелучевая, длинный лучевой разгибатель кисти, локтевой разгибатель кисти, отводящая мышца и разгибатель большого пальца (предплечье) - приводит предплечье к плечу, сгибает и выпрямляет кисть и пальцы.

Упражнения с сопротивлением: сгибание рук в запястьях, работа на кистевом роллере, «сгибание Зоттмэна», удержание дисков штанги в пальцах.

Все виды спорта, соревнования силовиков с использованием рук.

Прямая мышца живота (брюшной пресс) - наклоняет позвоночник вперед, стягивает переднюю стенку живота, разводит ребра.

Упражнения с сопротивлением: все типы подъемов туловища из положения лежа, то же по сокращенной амплитуде, подъемы на «римском стуле».

Гимнастика, прыжки с шестом, борьба, ныряние, плавание.

Большая передняя зубчатая мышца (зубчатые мышцы) - поворачивает лопатку вниз, разводит лопатки, расширяет грудную клетку, поднимает руки над головой.

Упражнения с сопротивлением: «пуловеры», жимы стоя.

Тяжелая атлетика, метания, бокс, прыжки с шестом.

Косые наружные мышцы живота (косые мышцы) - сгибают позвоночник вперед и в стороны, стягивают переднюю стенку брюшной полости.

Упражнения с сопротивлением: наклоны в стороны, скручивание торса, подъемы туловища со скручиванием.

Толкание ядра, метание копья, борьба, футбол, теннис.

Трапециевидная мышца (трапеции) - поднимает и опускает плечевой пояс, передвигает лопатки, отводит голову назад и наклоняет в стороны.

Упражнения с сопротивлением: поднимания плеч, подъемы штанги на грудь, жим из-за головы, подъемы в стороны рук выше головы, гребковые движения.

Тяжелая атлетика, борьба, гимнастика, стойка на руках.

Группа дельтовидных мышц : передняя головка, боковая головка, задняя головка (дельтоиды) - поднимают руки до горизонтального положения (каждая головка поднимает руку в специфическом направлении: передняя - вперед, боковая - в стороны, задняя - назад).

Упражнения с сопротивлением: все жимы со штангой, гантелями; жимы лежа (передняя дельта); подъемы гантелей вперед, в стороны и назад; подтягивания на перекладине (задняя дельта).

Тяжелая атлетика, гимнастика, толкание ядра, бокс, метания.

Трехглавая мышца (трицепс) - выпрямляет руку и отводит ее назад.

Упражнения с сопротивлением: выпрямления рук, жимы вниз на блоке, жимы лежа узким хватом; все упражнения, включающие выпрямления рук. Выполняет вспомогательную роль в гребковых упражнениях.

Стойка на руках, гимнастика, бокс, гребля.

Широчайшие мышцы спины (широчайшие мышцы) - отводят руку вниз и назад, расслабляют плечевой пояс, способствуют усиленному дыханию, сгибают торс в сторону.

Упражнения с сопротивлением: все виды подтягиваний и тяг на блоках, движения типа гребка, "пуловеры».

Тяжелая атлетика, гребля, гимнастика.

Группа мышц спины : надостная мышца, малая круглая мышца, большая круглая мышца, ромбовидная (спина) - поворачивают руку наружу и внутрь, помогают в отведении руки назад, поворачивают, поднимают и сводят лопатки.

Упражнения с сопротивлением: приседания, становая тяга, движения типа гребка, подъемы туловища из положения лежа ничком.

Тяжелая атлетика, борьба, толкание ядра, гребля, плавание, защита в футболе, танцевальные движения.

Мышцы нижней части тела

Квадрицепсы : широкая наружная мышца бедра, прямая мышца, широкая внутренняя мышца, портняжная мышца (квадрицепс) - выпрямляют ноги, тазобедренный сустав; сгибают ноги, тазобедренный сустав; поворачивают ногу наружу и внутрь.

Упражнения с сопротивлением: все формы приседаний, жимов ногами и выпрямлений ног.

Скалолазание, велоспорт, тяжелая атлетика, легкая атлетика, балет, футбол, коньки, европейский футбол, пауэрлифтинг, спринты, танцы.

Бицепс бедра : полуперепончатая мышца, полусухожильная мышца (бицепс бедра) - различные действия: сгибание ног, поворот бедра внутрь и наружу, разгибание бедра.

Упражнения с сопротивлением: сгибания ног, становая тяга с выпрямленными ногами, Гаккен-приседы с широкой постановкой ступней.

Борьба, спринт, коньки, балет, бег с препятствиями, плавание, прыжки, тяжелая атлетика, пауэрлифтинг.

Большая ягодичная мышца (ягодицы) - выпрямляет и поворачивают бедро наружу.

Упражнения с сопротивлением: приседы, жимы ногами, становые тяги.

Тяжелая атлетика, пауэрлифтинг, лыжи, плавание, спринты, велоспорт, скалолазание, танцы.

Икроножная мышца (голень) - выпрямляет стопу, способствует напряжению ноги в колене, «выключению» коленного сустава.

Упражнения с сопротивлением: подъемы на носки стоя, «ослиные» подъемы, полуприседы или четверть-приседы.

Все формы прыжков и бега, велоспорт, балет.

Камбаловидная мышца

Упражнения с сопротивлением: подъемы на носки сидя.

Группа передней поверхности голени : передняя большеберцовая, длинная малоберцовая - выпрямляет, сгибает и поворачивает ступню.

Упражнения с сопротивлением: подъемы на носки стоя и сидя, поднимание пальцев ног.

Лекция 6. ОДА. МЫШЕЧНАЯ СИСТЕМА

1. Строение и функции скелетных мышц

2. Классификация скелетных мышц

4. Мышцы тела человека

Строение и функции скелетных мышц

Скелетные мышцы являются активной частью опорно-двигательного аппарата. Построены эти мышцы из поперечнополосатых (исчерченных) мышечных волокон. Мышцы прикрепляются к костям скелета и при своем сокращении (укорочении) приводят костные рычаги в движение. Мышцы удерживают положение тела и его частей в пространстве, перемещают костные рычаги при ходьбе, беге и других движениях, выполняют жевательные, глотательные и дыхательные движения, участвуют в артикуляции речи и мимике, вырабатывают тепло.

В теле человека насчитывается около 600 мышц, большинство из которых парные. Масса скелетных мышц у взрослого человека достигает 30-40 % массы тела. У новорожденных и детей на долю мышц приходится до 20-25 % массы тела. В пожилом и старческом возрасте масса мышечной ткани не превышает 20-30 %.

Каждая мышца состоит из большого числа мышечных волокон. Каждое волокно имеет тонкую оболочку - эндомизий, образованный небольшим количеством соединительнотканных волокон. Пучки мышечных волокон окружены рыхлой волокнистой соединительной тканью, получившей название внутреннего перимизия, который отделяет мышечные пучки друг от друга. Снаружи мышца также имеет тонкую соединительнотканную оболочку - наружный перимизий, тесно сращенный с внутренним перимизием проникающими внутрь мышцы пучками соединительнотканных волокон. Соединительнотканные волокна, окружающие мышечные волокна и их пучки, выходя за пределы мышцы, образуют сухожилие.

В каждой мышце разветвляется большое число кровеносных сосудов, по которым кровь приносит к мышечным волокнам питательные вещества и кислород, а уносит продукты обмена веществ. Источником энергии для мышечных волокон является гликоген. В процессе его расщепления вырабатывается аденозинтрифосфорная кислота (АТФ), используемая для мышечного сокращения. Нервы, входящие в мышцу, содержат чувствительные и двигательные волокна.

Скелетные мышцы обладают такими свойствами, как возбудимость, проводимость и сократимость. Мышцы способны под влиянием нервных импульсов возбуждаться, приходить в рабочее (деятельное) состояние. При этом возбуждение быстро распространяется (проводится) от нервных окончаний (эффекторов) до сократительных структур - мышечных волокон. В результате мышца сокращается, укорачивается, приводит в движение костные рычаги.

У мышц различают сократительную часть (брюшко), построенную из поперечнополосатых мышечных волокон, и сухожильные концы (сухожилия), которые прикрепляются к костям скелета. У некоторых мышц сухожилия вплетаются в кожу (мимические мышцы), прикрепляются к глазному яблоку или к соседним мышцам (у мышц промежности). Образованы сухожилия из оформленной плотной волокнистой соединительной ткани и отличаются большой прочностью. У мышц, расположенных на конечностях, сухожилия узкие и длинные. Многие лентовидные мышцы имеют широкие сухожилия, получившие название апоневрозов.

Классификация скелетных мышц

В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции.

Форма мышц . Наиболее часто встречаются мышцы веретенообразные и лентовидные (рис. 30). Веретенообразные мышцы располагаются преимущественно на конечностях, где они действуют на длинные костные рычаги. Лентовидные мышцы имеют различную ширину, они обычно участвуют в образовании стенок туловища, брюшной, грудной полостей. Веретенообразные мышцы могут иметь два брюшка, разделенные промежуточным сухожилием (двубрюшная мышца), две, три и четыре начальные части - головки (двуглавые, трехглавые, четырехглавая мышцы). Различают мышцы длинные и короткие, прямые и косые, круглые и квадратные.

Строение мышц . Мышцы могут иметь перистое строение, когда мышечные пучки прикрепляются к сухожилию с одной, двух или нескольких сторон. Это одноперистые, двуперистые, много перистые мышцы. Перистые мышцы построены из большого количества коротких мышечных пучков, обладают значительной силой. Это сильные мышцы. Однако они способны сокращаться лишь на небольшую длину. В то же время мышцы с параллельным расположением длинных мышечных пучков не очень сильные, но они способны укорачиваться до 50 % своей длины. Это ловкие мышцы, они имеются там, где движения выполняются с большим размахом.

По выполняемой функции и по действию на суставы выделяют мышцы-сгибатели и разгибатели, приводящие и отводящие, сжиматели (сфинктеры) и расширители. Различают мышцы по их расположению в теле человека: поверхностные и глубокие, латеральные и медиальные, передние и задние.

3. Вспомогательные аппараты мышц

Свои функции мышцы выполняют с помощью вспомогательных аппаратов, к которым относятся фасции, фиброзные и костно-фиброзные каналы, синовиальные сумки, блоки.

Фасции – это соединительнотканные чехлы мышц. Они разделяют мышцы на мышечные перегородки, устраняют трение мышц одна о другую.

Каналы (фиброзные и костно-фиброзные) имеются в тех местах, где сухожилия перекидываются через несколько суставов (на кисти, стопе). Служат каналы для удержания сухожилий в определенном положении при сокращении мышц.

Синовиальные влагалища образованы синовиальной оболочкой (мембраной) одна пластинка которой выстилает стенки канала, а другая окружает сухожилие и срастается с ним. Обе пластинки срастаются своими концами, образуют замкнутую узкую полость, которая содержит небольшое количество жидкости (синовии) и смачивает скользящие одна о другую синовиальные пластинки.

Синовиальные (слизистые) сумки выполняют функцию, сходную с синовиальными влагалищами. Сумки представляют собой замкнутые, наполненные синовиальной жидкостью или слизью мешочки, расположенные в местах, где сухожилие перекидывается через костный выступ или через сухожилие другой мышцы.

Блоками называют костные выступы (мыщелки, надмыщелки), через которые перекидывается мышечное сухожилие. В результате угол прикрепления сухожилия к кости увеличивается. При этом возрастает сила действия мышцы на кость.

Работа и сила мышц

Мышцы действуют на костные рычаги, приводят их в движение или удерживают части тела в определенном положении. В каждом движении обычно участвует несколько мышц. Мышцы, действующие в одном направлении называют синергистами, действующие в разных направлениях - антагонистами.

На кости скелета мышцы действуют с определенной силой и выполняют при этом работу - динамическую или статическую. При динамической работе костные рычаги изменяют свое положение, перемещаются в пространстве. При статической работе мышцы напрягаются, но длина их не изменяется, тело (или его части) удерживается в определенном неподвижном положении. Такое сокращение мышц без изменения их длины называют изометрическим сокращением. Сокращение мышцы, сопровождающееся изменением ее длины, называют изотоническим сокращением.

С учетом места приложения мышечной силы к костному рычагу и других их характеристик в биомеханике выделяют рычаги первого рода и рычаги второго порядка (рис. 32). У рычага первого рода точка приложения мышечной силы и точка сопротивления (тяжесть тела, масса груза) находятся по разные стороны от точки опоры (от сустава). Примером рычага первого рода может служить голова, которая опирается на атлант (точка опоры). Тяжесть головы (ее лицевая часть) находится по одну сторону от оси атлантозатылочного сочленения, а место приложения силы затылочных мышц к затылочной кости - по другую сторону от оси. Равновесие головы достигается при условии, когда вращающий момент прилагаемой силы (произведение силы затылочных мышц на длину плеча, равную расстоянию от точки опоры до места приложения силы) будет соответствовать вращающему моменту силы тяжести передней части головы (произведение силы тяжести на длину плеча, равную расстоянию от точки опоры до точки приложения тяжести).

У рычага второго рода и точка приложения мышечной силы, и точка сопротивления (силы тяжести) находятся по одну сторону от точки опоры (оси сустава). В биомеханике выделяют два вида рычага второго рода. У первого вида рычага второго рода плечо приложения мышечной силы длиннее плеча сопротивления. Например, стопа человека. Плечо приложения силы трехглавой мышцы голени (расстояние от пяточного бугра до точки опоры - головок плюсневых костей) длиннее плеча приложения силы тяжести тела (от оси голеностопного сустава до точки опоры). В этом рычаге имеется выигрыш в прилагаемой мышечной силе (рычаг длиннее) и проигрыш в скорости перемещения силы тяжести тела (рычаг короче). У второго вида рычага второго рода плечо приложения мышечной силы будет короче плеча сопротивления (приложения силы тяжести). Плечо от локтевого сустава до места прикрепления сухожилия двуглавой мышцы короче, чем расстояние от этого сустава до кисти, где находится приложение силы тяжести. В этом случае имеется выигрыш в и размахе перемещения кисти (длинное плечо) и проигрыш в силе, действующей на костный рычаг (короткое плечо приложения силы).

Сила действия мышцы определяется массой (весом) того груза, который эта мышца может поднять на определенную высоту при своем максимальном сокращении. Такую силу принято называть подъемной силой мышцы. Подъёмная силы мышцы зависит от количества и толщины ее мышечных волокон. У человека мышечная сила составляет 5-10 кг на 1 кв. см физиологического поперечника мышцы. Для морфофункциональной характеристики мышц существует понятие их анатомического и физиологического по перечников (рис. 33). Физиологическим поперечником мышцы называют сумму поперечного сечения (площадей) всех мышечных волокон данной мышцы. Анатомическим поперечником мышцы является величина (площадей) поперечного ее сечения в наиболее широком месте. У мышцы с продольно расположенными волокнами (лентовидной, веретенообразной мышц) величина анатомического и физиологического поперечников будут одинаковыми. При косой ориентации большого числа коротких мышечных пучков, как это имеет место у перистых мышц, физиологический поперечник будет больше анатомического.

Вращающая сила мышцы зависит не только от ее физиологического или анатомического поперечника, или подъемной силы, но и от угла прикрепления мышцы к кости. Чем больше угол, под которым мышца прикрепляется к кости, тем большее действие она может оказать на эту кость. Для увеличения угла прикрепления мышц к кости служат блоки.

Мышцы тела человека

В зависимости от расположения в теле и для удобства изучения выделяют мышцы головы, шеи, туловища; мышцы верхних и нижних конечностей.

Мышцы, расположенные в разных областях тела человека, не только выполняют различные функции, но и имеют свои особенности строения. На конечностях с их длинными костными рычагами, приспособленными для передвижения, захватывания и удерживания различных предметов, мышцы имеют, как правило, веретенообразную форму, с продольным или косым расположением мышечных волокон, узкими и длинными сухожилиями. В области туловища, в образовании его стенок, участвуют ленто видные мышцы с широкими плоскими сухожилиями. Такие широкие сухожилия называют апоневрозами. В области головы жевательные мышцы одним своим концом начинаются на неподвижных костях основания черепа, а другим концом прикрепляются к единственной подвижной части черепа - нижней челюсти. Мимические мышцы начинаются на костях черепа и прикрепляются к коже. При сокращении мимических мышц изменяется рельеф кожи лица, формируется мимика.

Мышцы человека по отношению к его общей массе составляют примерно 40%. Основной их функцией в организме является обеспечение движения за счет способности сокращаться и расслабляться. Впервые строение мышц (8 класс) начинает изучаться в школе. Там знания даются на общем уровне, без особого углубления. Статья будет интересна тем, кто желает немного выйти за эти рамки.

Строение мышц: общие сведения

Мышечная ткань представляет собой группу, объединяющую поперечно-полосатую, гладкую и сердечную разновидности. Различающиеся по происхождению и строению, они объединены по признаку выполняемой функции, то есть способности сокращаться и удлиняться. Кроме перечисленных разновидностей, которые формируются из мезенхимы (мезодермы), в человеческом организме есть еще и мышечная ткань, имеющая эктодермальное происхождение. Это миоциты радужки глаз.

Структурное, общее строение мышц таково: они состоят из активной части, называемой брюшком, и сухожильных концов (сухожилия). Последние образованы из плотной соединительной ткани и выполняют функцию прикрепления. Они отличаются характерным беловато-желтым цветом и блеском. К тому же, обладают значительной крепостью. Обычно своими сухожилиями мышцы прикрепляются к звеньям скелета, соединение с которыми подвижно. Однако некоторые могут крепиться и к фасциям, к различным органам (глазное яблоко, хрящ гортани и т.д.), к коже (на лице). Кровоснабжение мышц различается и зависит от испытываемых ими нагрузок.

Регулирование работы мышц

Контроль над их работой осуществляется, как и у других органов, нервной системой. Рецепторами или эффекторами оканчиваются ее волокна в мышцах. Первые располагаются также и в сухожилиях, имеют вид концевых разветвлений чувствительного нерва или нервно-мышечного веретена, обладающего сложным устройством. Они реагируют на степень сокращения и растяжения, вследствие чего у человека появляется определенное чувство, которое, в частности, помогает определить положение тела в пространстве. Эффекторные нервные окончания (второе название - моторные бляшки) принадлежат двигательному нерву.

Строение мышц характеризуется также наличием в них окончаний волокон симпатической нервной системы (вегетативной).

Строение поперечно-полосатой мышечной ткани

Ее часто называют скелетной или исчерченной. Строение скелетной мышцы достаточно непростое. Она образована волокнами, имеющими цилиндрическую форму, длиной от 1 мм до 4 см и более, толщиной 0,1 мм. Причем каждое представляет собой особый комплекс, состоящий из миосателлитоцитов и миосимпласта, покрытых плазматической мембраной, называемой сарколеммой. Снаружи к ней прилегает базальная мембрана (пластинка), образованная из тончайших коллагеновых и ретикулярных волокон. Миосимпласт состоит из большого количества ядер эллипсоидной формы, миофибрилл и цитоплазмы.

Строение мышц данного типа отличается хорошо развитой саркотубулярной сетью, образованной из двух компонентов: канальцев ЭПС и Т-трубочек. Последние играют важную роль в ускорении проведения потенциала действия к микрофибриллам. Миосателлитоциты находятся непосредственно над сарколеммой. Клетки имеют уплощенную форму и крупное ядро, богатое хроматином, а также центросому и небольшое число органелл, миофибриллы отсутствуют.

Саркоплазма скелетной мышцы богата особым белком - миоглобином, который, как и гемоглобин, имеет способность связываться с кислородом. В зависимости от его содержания, наличия/отсутствия миофибрилл и толщины волокон различают два вида поперечно-полосатых мышц. Специфическое строение скелета, мышцы - все это элементы приспособления человека к прямохождению, их главные функции - опора и движение.

Красные мышечные волокна

Они обладают темным цветом, богаты миоглобином, саркоплазмой и митохондриями. Однако содержат мало миофибрилл. Эти волокна сокращаются достаточно медленно и могут долго пребывать в таком состоянии (иначе говоря, в рабочем). Строение скелетной мышцы и выполняемые ею функции стоит рассматривать как части единого целого, взаимно обуславливающие друг друга.

Белые мышечные волокна

Они отличаются светлым цветом, содержат гораздо меньшее количество саркоплазмы, митохондрий и миоглобина, но зато характеризуются высоким содержанием миофибрилл. Это обуславливает то, что они сокращаются гораздо интенсивнее, чем красные, но и «устают» тоже быстро.

Строение мышц человека отличается тем, что в организме имеется и тот, и другой вид. Такая совокупность волокон обуславливает быстроту реакции мышц (сокращение) и их продолжительную работоспособность.

Гладкая мышечная ткань (неисчерченная): строение

Она построена из миоцитов, дислоцирующихся в стенках лимфатических, кровеносных сосудов и образующих сократительный аппарат во внутренних полых органах. Это удлиненные клетки, имеющие веретенообразную форму, без поперечной исчерченности. Их расположение - групповое. Каждый миоцит окружает базальная мембрана, коллагеновые и ретикулярные волокна, среди которых находятся эластические. Между собой клетки связывают многочисленные нексусы. Особенности строения мышц данной группы заключаются в том, что к каждому миоциту, окруженному соединительной тканью, подходит одно нервное волокно (например, сфинктер зрачка), а импульс транспортируется от одной клетки к другой с помощью нексусов. Скорость его движения - 8-10 см/с.

У гладких миоцитов скорость сокращения гораздо меньше, чем у миоцитов исчерченной мышечной ткани. Зато и энергия расходуется экономно. Такое строение позволяет им совершать длительные сокращения тонического характера (например, сфинктеры кровеносных сосудов, полых, трубчатых органов) и достаточно медленные движения, которые зачастую бывают ритмичны.

Сердечная мышечная ткань: особенности

По классификации она принадлежит к поперечно-полосатой, но строение и функции мышц сердца заметно отличаются от скелетных. Сердечная мышечная ткань состоит из кардиомиоцитов, которые образуют комплексы, соединяясь друг с другом. Сокращение сердечной мышцы не подвластно контролю со стороны сознания человека. Кардиомиоциты представляют собой клетки, имеющие неправильную цилиндрическую форму, с 1-2 ядрами, большим количеством крупных митохондрий. Между собой они соединены вставочными дисками. Это особая зона, которая включает цитолемму, области прикрепления миофибрилл к ней, десмосы, нексусы (через них происходит передача нервного возбуждения и ионный обмен между клетками).

Классификация мышц в зависимости от формы и величины

1. Длинные и короткие. Первые встречаются там, где наиболее большой размах при движении. Например, верхние и нижние конечности. А короткие мышцы, в частности, расположены между отдельными позвонками.

2. Широкие мышцы (на фото - желудок). Они в основном располагаются на туловище, в полостных стенках тела. Например, поверхностные мышцы спины, груди, живота. При многослойном расположении их волокна, как правило, идут в разных направлениях. Поэтому они обеспечивают не только большое многообразие движений, но и укрепляют стенки полостей тела. У широких мышц сухожилия имеют плоскую форму и занимают большую поверхность, их называют растяжениями или апоневрозами.

3. Круговые мышцы. Они находятся вокруг отверстий тела и своими сокращениями суживают их, в результате чего получили название «сфинктеры». Например, круговая мышца рта.

Сложные мышцы: особенности строения

Их названия соответствуют их структуре: двух-, трех- (на фото) и четырехглавые. Строение мышц данного вида отличается тем, что их начало бывает не единым, а разделенным на 2, 3 или 4 части (головки) соответственно. Начинаясь от разных точек кости, они затем сдвигаются и объединяются в общее брюшко. Оно тоже может быть поделено промежуточным сухожилием поперек. Такая мышца называется двубрюшной. Направление волокон может быть параллельным оси либо находиться к ней под острым углом. В первом случае, наиболее распространенном, мышца достаточно сильно укорачивается при сокращении, обеспечивая тем самым большой размах при движениях. А во втором - волокна короткие, расположены под углом, но их гораздо больше по количеству. Поэтому мышца укорачивается незначительно при сокращении. Ее главное преимущество заключается в том, что она развивает при этом большую силу. В случае если волокна подходят к сухожилию только с одной стороны, мышца имеет название одноперистой, если с двух - двуперистой.

Вспомогательные аппараты мышц

Строение мышц человека уникально и имеет свои особенности. Так, например, под влиянием их работы из окружающей соединительной ткани образуются вспомогательные аппараты. Всего их четыре.

1. Фасции, которые есть не что иное, как оболочки из плотной, волокнистой фиброзной ткани (соединительной). Они покрывают как одиночные мышцы, так и целые группы, а также некоторые другие органы. К примеру, почки, сосудисто-нервные пучки и т.д. Они влияют на направление тяги во время сокращения и не допускают смещения мышц в стороны. Плотность и прочность фасций зависит от их расположения (в различных частях тела они отличаются).

2. Синовиальные сумки (на фото). Об их роли и строении многие, пожалуй, помнят еще со школьных уроков (Биология, 8 класс: "Строение мышц"). Они представляют собой своеобразные мешки, стенки которых образованы соединительной тканью и достаточно тонкие. Внутри заполнены жидкостью типа синовии. Как правило, образуются они там, где сухожилия соприкасаются между собой либо испытывают большое трение о кость при сокращении мышцы, а также в местах трения об нее кожного покрова (например, локти). Благодаря синовиальной жидкости улучшается и облегчается скольжение. Развиваются они в основном после рождения, и с годами полость увеличивается.

3. Синовиальные влагалища. Их развитие происходит внутри костно-фиброзных или фиброзных каналов, которыми сухожилия длинных мышц окружены в местах скольжения по кости. В строении синовиального влагалища различают два лепестка: внутренний, покрывающий со всех сторон сухожилие, и наружный, выстилающий стенки фиброзного канала. Они препятствуют трению сухожилий о кость.

4. Сесамовидные кости. Как правило, они окостеневают внутри связок или сухожилий, укрепляя их. Это облегчает работу мышцы за счет увеличения плеча приложения силы.

Существуют три разновидности мышечной ткани. Гладкая мускулатура образует стенки кровеносных сосудов, желудка, кишечника, мочевыводящих путей. Поперечно-полосатая сердечная мышца составляет большую часть мышечного слоя сердца. Третий вид – скелетная мускулатура. Название этих мышц связано с тем, что они соединены с костями. Скелетные мышцы и кости представляют собой единую систему, обеспечивающую движения.

Скелетная мышца состоит из особых клеток – миоцитов. Это весьма крупные клетки: их диаметр составляет от 50 до 100 мкм, а длина достигает нескольких сантиметров. Другая особенность миоцитов – наличие множества ядер, количество которых достигает сотни.

Главная функция скелетной мышцы – сокращение. Оно обеспечивается особыми органеллами – миофибриллами. Они располагаются рядом с митохондриями, ведь сокращение требует большого количества энергии.

Миоциты объединяются в комплекс – миосимпласт, окруженный одноядерными клетками – миосателлитами. Они представляют собой стволовые клетки и начинают активно делиться в случае повреждения мышцы. Миосимпласт и миосателлиты образуют – структурную единицу мышцы.

Мышечные волокна соединены между собой рыхлой соединительной тканью в пучки первого ряда, из которых состоят пучки второго ряда и т.д. Пучки всех рядов покрыты общей оболочкой. Соединительнотканные прослойки достигают концов мышцы, где переходят в сухожилие, прикрепляющееся к кости.

Для сокращений, осуществляемых скелетными мышцами, необходимо большое количество питательных веществ и кислорода, поэтому мышцы в изобилии снабжены кровеносными сосудами. И все же кровь не всегда способна обеспечивать мышцы кислородом: при сокращении мышц сосуды перекрываются, приток крови прекращается, поэтому в клетках мышечной ткани присутствует белок, способный связывать кислород – миоглобин.

Сокращение мышц регулируется соматическим отделом нервной системы. К каждой мышце подходит периферический нерв, состоящий из аксонов нейронов, расположенных в спинном мозге. В толще мышцы нерв разветвляется на отростки-аксоны, каждый из которых достигает отдельного мышечного волокна.

Импульсы из центральной нервной системы, передаваемые по периферическим нервам, регулируют тонус мышц – их постоянное напряжение, благодаря которому тело сохраняет определенное положение, а также сокращения мышц, связанное с непроизвольными и произвольными двигательными актами.

При сокращении мышца укорачивается, ее концы сближаются. Мышца при этом тянет за собой кость, к которой прикреплена с помощью сухожилия, и кость изменяет свое положение. Каждой скелетной мышце соответствует мышца- , которая расслабляется при ее сокращении, а затем сокращается, чтобы вернут кость в прежнее положение. Например, например, антагонист бицепса – двуглавой мышцы плеча – это трицепс, трехглавая мышца. Первая из них выступает как сгибатель локтевого сустава, а вторая – как разгибатель. Впрочем, разделение условно, некоторые двигательные акты требуют одновременного сокращения мышц-антагонистов.

У человека более 200 скелетных мышц, отличающихся друг от друга по размеру, форме, способу прикрепления к кости. Они не остаются неизменными в течение жизни – в них возрастает количество либо мышечной, либо соединительной ткани. Увеличению количества мышечной ткани способствует двигательная активность.



effenergy.ru - Тренировки, питание, экипировка