Нервно-мышечный синапс (мионевральный синапс) — эффекторное нервное окончание на скелетном мышечном волокне. Структура и функции нервно-мышечного синапса

Физиология нервно-мышечного синапса

Синапс (греч. synapsis - соединение) - это специализированная структура, обеспечивающая передачу сигнала от клетки к клетке. Посредством синапса реализуется действие многих фармакологических препаратов.

Структурно-функциональная организация. Каждый синапс имеет пре - и постсинаптическую мембраны и синаптическую щель (рис. 17).

Рис. 17. Нервно-мышечный синапс скелетной мышцы: 1 – ветвь аксона; 2 – пресинаптическое окончание аксона; 3 – митохондрия; 4 – синаптические пузырьки, содержащие ацетилхолин; 5 – синаптическая щель; 6 – молекулы медиатора в синаптической щели; 7 – постсинаптическая мембрана мышечного волокна с N-холинорецепторами

Пресинаптическая мембрана нервно-мышечного синапса представляет собой часть мембраны пресинаптического окончания аксона мотонейрона. Через нее осуществляется выброс (экзоцитоз) медиатора (лат. mediator - посредник) в синаптическую щель. В нервно-мышечном синапсе медиатором является ацетилхолин. Медиатор пресинаптического окончания содержится в синаптических пузырьках (везикулах), диаметр которых составляет около 40 нм. Они образуются в комплексе Гольджи, с помощью быстрого аксонного транспорта доставляются в пресинаптическое окончание, где заполняются медиатором и АТФ. В пресинаптическом окончании содержится несколько тысяч везикул, в каждой из которых имеется от 1 тыс. до 10 тыс. молекул химического вещества.

Постсинаптическая мембрана (концевая пластинка в нервно-мышечном синапсе) - это часть клеточной мембраны иннервируемой мышечной клетки, содержащая рецепторы, способные связывать молекулы ацетилхолина. Особенность этой мембраны: множества мелких складок, увеличивающих ее площадь и количество рецепторов на ней до 10-20 млн в одном синапсе.

Синаптическая щель в нервно-мышечном синапсе имеет ширину в среднем 50 нм. Она содержит межклеточную жидкость, ацетилхолинэстеразу и мукополисахаридное плотное вещество в виде полосок, мостиков, в совокупности образующих базальную мембрану, соединяющую пре- и постсинаптическую мембраны.

Механизмы синаптической передачи включают три основных этапа (рис. 18).

Рис. 18. Механизм проведения импульса через химический синапс: 1-8 – этапы процесса (Чеснокова, 2007)

Первый этап - процесс выброса медиатора в синаптическую щель, который запускается посредством ПД пресинаптического окончания. Деполяризация его мембраны ведет к открытию потенциалуправляемых Са-каналов. Са 2+ входит в нервное окончание согласно электрохимическому градиенту. Часть медиатора в пресинаптическом окончании локализуется на пресинаптической мембране изнутри. Са 2+ активирует экзоцитозный аппарат пресинапса, представляющий собой совокупность белков (синапсин, спектрин и др.), пресинаптического окончания, активация которых обеспечивает выброс ацетилхолина посредством экзоцитоза в синаптическую щель. Количество высвобождаемого ацетилхолина из пресинаптического окончания пропорционально в четвертой степени количеству поступившего туда Са 2+ . На один ПД из пресинаптического окончания нервно-мышечного синапса выбрасывается 200-300 квантов (везикул) медиатора.

Второй этап - диффузия ацетилхолина в течение 0,1-0,2 мс к постсинаптической мембране и действие его на N-холинорецепторы (стимулируются также никотином, вследствие чего и получили свое название). Удаление ацетилхолина из синаптической щели осуществляется путем разрушения его под действием ацетилхолинэстеразы, расположенной в базальной мембране синаптической щели, в течение нескольких десятых долей миллисекунды. Около 60% холина захватывается обратно пресинаптическим окончанием, что делает синтез медиатора более экономичным, часть ацетилхолина рассеивается. В промежутках между ПД из пресинаптического окончания происходит спонтанное выделение 1- 2 квантов медиатора в синаптическую щель в течение 1 с, формируя так называемые миниатюрные потенциалы (0,4-0,8 мВ). Они поддерживают высокую возбудимость иннервируемой клетки в условиях функционального покоя и выполняют трофическую роль, а в ЦНС - способствуют поддержанию тонуса ее центров.

Третий этап - взаимодействие ацетилхолина с N-холинорецепторами постсинаптической мембраны, в результате чего открываются ионные каналы на 1 мс и, вследствие преобладания входа N + в клетку, происходит деполяризация постсинаптичедкой мембраны (концевой пластинки). Эту деполяризацию в нервно-мышечном синапсе называют потенциалом концевой пластинки (ПКП) (рис. 19).

Особенностью нервно-мышечного синапса скелетного мышечного волокна является то, что при одиночной его активации формируется ПКП большой амплитуды (30-40 мВ), электрическое поле которого вызывает генерацию ПД на мембране мышечного волокна вблизи синапса. Большая амплитуда ПКП обусловлена тем, что нервные окончания делятся на многочисленные веточки, каждая из которых выбрасывает медиатор.

Рис. 19. Потенциал концевой пластинки (Шмидт, 1985): КП – критический потенциал; ПД – потенциал действия; А – ПКП в нормальной мышце; Б – ослабленный ПКП в курарезированной мышце; стрелками указан момент нанесения стимула

Характеристика проведения возбуждения в химических синапсах . Одностороннее проведение возбуждения от нервного волокна к нервной или эффекторной клетке, так как пресинаптическое окончание чувствительно только к нервному импульсу, а постсинаптическая мембрана - к медиатору.

Неизолированное - возбуждение рядом расположенных постсинаптических мембран суммируется.

Синаптическая задержка в передаче сигнала к другой клетке (в нервно-мышечном синапсе 0,5-1,0 мс), что связано с высвобождением медиатора из нервного окончания диффузией его к постсинаптической мембране и возникновением постсинаптических потенциалов, способных вызвать ПД.

Декрементность (затухание ) возбуждения в химических синапсах при недостаточном выделении медиатора из пресинаптических окончаний в синаптические щели.

Низкая лабильность (в нервно-мышечном синапсе составляет 100 Гц), которая в 4 - 8 раз ниже лабильности нервного волокна. Это объясняется синаптической задержкой.

Проводимость нервно-мышечного синапса (как и химических синапсов ЦНС) угнетается или, наоборот, стимулируется различными веществами .

Например, кураре и курареподобные вещества (диплацин, тубокурарин) обратимо связываются с N-холинорецепторами постсинаптической мембраны, блокируют действие на нее ацетилхолина и передачу в синапсе. Напротив, некоторые фармакологические препараты, например прозерин, подавляют активность ацетилхолинэстеразы, способствуя умеренному накоплению ацетилхолина и облегчению синаптической передачи, что используется в лечебной практике.



Утомляемость (синаптическая депрессия) - ухудшение проводимости вплоть до полной блокады проведения возбуждения при длительном функционировании синапса (главная причина - истощение медиатора в пресинаптическом окончании).

Вопросы для самоконтроля

1.Каков механизм распространения возбуждения по нервному волокну? Какова роль перехватов Ранвье в проведении возбуждения по миелинизированному нервному волокну?

2.В чем преимущество скачкообразного (сальтаторного) распространения возбуждения над непрерывным его проведением вдоль мембраны волокна?

3.В чем физиологическое значение изолированного проведения возбуждения по нервному волокну?

4.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе А? Какова скорость проведения возбуждения по ним?

5.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе В? Какова скорость проведения по ним?

6.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе С? Какова скорость проведения возбуждения по ним?

7.Перечислите структуры нервно-мышечного синапса (скелетная мышца). Что называют концевой пластинкой?

8.Перечислите последовательность процессов, ведущих к освобождению медиатора из пресинаптической мембраны в синаптическую щель при передаче возбуждения в синапсе.

9. Локальным потенциалом или распространяющимся возбуждением является потенциал концевой пластинки?

10.Что такое миниатюрные потенциалы концевой пластинки, каков механизм их возникновения?

11.В чем заключается трофическое влияние нерва на мышцу, осуществляемое через нервно-мышечный синапс?

12.Какие вещества являются медиаторами в нервно-мышечных синапсах гладкой и поперечнополосатой мышц?

13.Что такое сенсорный рецептор?

14.На какие две группы делятся сенсорные рецепторы по скорости адаптации? Назовите рецепторы, относящиеся к каждой из них.

15.Что понимают под первичными и вторичными рецепторами?

16.Перечислите основные свойства рецепторов.

17.Что называют адаптацией рецепторов? Как изменяется частота импульсов в афферентном нервном волокне при адаптации рецептора?

18.Назовите локальные потенциалы, возникающие при возбуждении первичных и вторичных рецепторов.

19.Рецепторный потенциал, где он возникает, каково его значение?

20.Генераторный потенциал, где он возникает, каково его значение?

21.Где возникает потенциал действия при возбуждении первичного сенсорного рецептора?

22. Где возникает потенциал действия при возбуждении вторичного сенсорного рецептора?

Физиология мышц

1.3.1. Структурно­функциональная характеристика скелетной мышцы

Мышцы подразделяют на поперечнопо­лосатые (скелетная и сердечная ) и гладкие (сосуды и внутренние органы, кроме сердца).

Скелетная мышца состоит из мышечных волокон , изолированных в структурном и функциональном отношении друг от Друга, которые представляют собой вытянутые многоядерные клетки. Толщина волокна составляет 10-100 мкм, а его длина варьирует в пределах от нескольких миллиметров до нескольких сантиметров. Количество мышечных волокон, установившись постоянным на 4-5-м месяце постнатального онтогенеза, в последующем не изменяется; с возрастом изменяются (увеличиваются) лишь их длина и диаметр.

Назначение основных структурных элементов. Характеристика основных элементов мышечного волокна. От клеточной мембраны мышечного волокна (сарколеммы) вглубь отходят многочисленные поперечные инвагинации (Т-трубочки ), которые обеспечивают ее взаимодействие с саркоплазматическим ретикулулом (СПР ) (рис. 20).

Рис. 20. Взаимоотношение клеточной мембраны (1), поперечных трубочек (2), боковых цистерн (3) и продольных трубочек (4) саркоплпзматическаого ретикулума, сократительных белков (5): А – в состоянии покоя; Б – при сокращении мышечного волокна; точками обозначены ионы Ca 2+

СПР представляет собой систему связанных друг с другом цистерн и отходящих от них в продольном направлении канальцев, расположенных между миофибриллами. Терминальные (концевые) цистерны СПР примыкают к Т-трубочкам, формируя так называемые триады . В цистернах содержится Са 2+ , играющий важную роль в мышечном сокращении. В саркоплазме имеются внутриклеточные элементы: ядра, митохондрии, белки (в том числе миоглобин), капельки жира, гранулы гликогена, фосфатсодержащие вещества, различные малые молекулы и электролиты.

Миоибриллы - субъединицы мышечного волокна. В одном мышечном волокне может насчитываться более 2 тыс. миофибрилл, их диаметр 1-2 мкм. В одиночной миофибрилле содержится 2-2,5 тыс. протофибрилл - параллельно расположенных нитей белка (тонкие - актин, толстые - миозин ). Актиновые нити состоят из двух субъединиц, скрученных в виде спирали. В состав тонких нитей входят также регуляторные белки - тропомиозин и тропонин (рис. 21).

Рис. 21. Взаимное расположение структурных элементов миофибрилл при их расслаблении (А,Б) и сокращении (В)

Эти белки в невозбужденной мышце препятствуют взаимосвязи актина и миозина, поэтому мышца в покое находится в расслабленном состоянии. Миофибриллы включают в себя последовательно соединенные блоки - саркомеры (Б), отделенные друг от друга Z-полосками. Саркомер (длина 2-Змкм) является сократительной единицей мышечного волокна; при длине 5см оно включает в себя около 20 тыс. последовательно соединенных саркомеров. Миофибриллы отдельного мышечного волокна связаны таким образом, что расположение саркомеров совпадает, и это создает картину поперечной исчерченности волокна при наблюдении в световом микроскопе (рис. 22).

Рис. 22. Саркомер миоцита скелетной мышцы (A. Vander, J. Sherman, D. Luciano, 2004)

Элементы саркoмера (см. рис. 21). Миозиновые протофибриллы образуют наиболее темную часть саркомера - А-диск (анизотропный, он сильно поляризует белый свет). Более светлый участок в центре А-диска называют Н-зоной . Светлый участок саркомера между двумя А-дисками называют 1-диском (изотропный, почти не поляризует свет). Он образован актиновыми протофибриллами, идущими в обе стороны от Z-полосок. Каждый саркомер имеет два набора тонких нитей, прикрепленных к Z-полоскам, и один комплект толстых нитей, сосредоточенных в А-диске. В расслабленной мышце концы толстых и тонких филаментов в разной степени перекрывают друг друга на границе между А- и 1-дисками.

Классификация мышечных волокон:

По структурно-функциональным свойствам и цвету выделяют две основные группы мышечных волокон: быстрые и медленные.

Белые (быстрые) мышечные волокна содержат больше миофибрилл и меньше - митохондрий, миоглобина и жиров, но больше гликогена и гликолитических ферментов; эти волокна называют гликолитическими . Капиллярная сеть, окружающая эти волокна, относительно редкая. Скорость рабочего цикла у данных волокон примерно в 4 раза больше, чем у медленных, что объясняется более высокой АТФазной активностью быстрых волокон, но они обладают малой выносливостью. У белых мышечных волокон число нитей актина и миозина больше, чем у красных, поэтому они толще и сила их сокращения больше, чем у красных волокон.

Красные мышечные волокна содержат много митохондрий, миоглобина , жирных кислот. Эти волокна окружены густой сетью кровеносных капилляров, они имеют меньший диаметр. Митохондрии обеспечивают высокий уровень окислительного фосфорилирования, поэтому данные волокна называют оксидативными. Красные мышечные волокна подразделяются на две подгруппы: быстрые и медленные . Медленные волокна могут выполнять работу в течение относительно продолжительного периода времени; утомление в них развивается медленнее. Они более приспособлены к тоническим сокращениям. Красные быстрые волокна по скорости утомления занимают промежуточное положение между белыми и красными медленными. Скорость их сокращения близка к скорости сокращения белых волокон, что также объясняется высокой АТФазной активностью миозина красных быстрых волокон.

Также имеется незначительное число истинных тонических мышечных волокон; на них локализуется по 7-10 синапсов, принадлежащих, как правило, нескольким мотонейронам, например, в глазодвигательных мышцах, мышцах среднего уха. ПКП этих мышечных волокон не вызывают генерации ПД в них, а непосредственно запускают мышечное сокращение.

Группа мышечных волокон, двигательную (нейромоторную) единицу. В мышцах, совершающих быстрые и точные движения, например в глазодвигательных, нейромоторные единицы состоят из 3-5 мышечных волокон. В мышцах, осуществляющих менее точные движения (например, мышцы туловища и конечностей), двигательные единицы включают сотни и тысячи мышечных волокон. Большая двигательная единица, по сравнению с малой, включает крупный мотонейрон с относительно толстым аксоном, который образует большое число концевых веточек в мышце и, следовательно, иннервирует большое число мышечных волокон. Все мышечные волокна одной двигательной единицы, независимо от их количества, относятся к одному типу. Все скелетные мышцы по своему составу являются смешанными, т.е. образованы красными и белыми мышечными волокнами.

Специфическим свойством всех мышц является сократимость - способность сокращаться, т.е. укорачиваться или развивать напряжение. Реализация этой способности осуществляется с помощью возбуждения и его проведения по мышечному волокну (свойства соответственно возбудимости и проводимости).

Скелетные мышцы не обладают автоматией, управляются организмом произвольно импульсацией из ЦНС, поэтому их называют также произвольными . Гладкие мышцы по собственному желанию не сокращаются, поэтому их называют также непроизвольными, но они обладают автоматией.

Функции скелетной мышцы :

Обеспечение двигательной активности организма - поиск и добывание воды и пищи, ее захват, жевание, глотание, оборонительные реакции, трудовая деятельность - физическая и творческая работа художника, писателя, ученого, композитора в конечном итоге выражается в движении: рисование, письмо, игра на музыкальном инструменте и т.п.

Обеспечение дыхания (движений грудной клетки и диафрагмы).

Коммуникативная функция (устная и письменная речь, мимика и жесты).

Участие в процессах терморегуляции организма с помощью изменения интенсивности сократительного термогенеза.

Структурное образование, обеспечивающее переход возбуждения с нервного волокна на иннервируемую им клетку - мышечную, нервную или железистую, получило название синапса .

Электронномикроскопические исследования выявили, что все синапсы как в центральной нервной системе, так и на периферии состоят из трёх основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 161 ).

Рис. 161. Взаимоотношения между нервным волокном, нервным окончанием и скелетным мышечным волокном (схема). 1 - миелинизированное нервное волокно; 2 - нервное окончание с пузырьками медиатора: 3 - постсинаптическая мембрана мышечного волокна; 4 - синаптическая щель; 5 - внесинаптическая мембрана мышечного волокна; 6 - миофибриллы; 7 - саркоплазма; 8 - потенциал действия нервного волокна; 9 - потенциал концевой пластинки (постсинаптический потенциал); 10 - потенциал действии мышечного волокна.

Пресинаптической мембраной называется мембрана, покрывающая нервное окончание. Последнее представляет собой своеобразный нейросекреторный аппарат. Здесь вырабатывается и выделяется медиатор, осуществляющий возбуждающее или тормозное действие на иннервируемую клетку.

В состоянии покоя медиатор содержится в так называемых синаптических пузырьках, отчетливо видимых на электронных микрофотографиях нервных окончаний (см. схему на рис. 161 ). При деполяризации пресинаптической мембраны эти пузырьки лопаются, медиатор освобождается и изливается через мембрану в синаптическую щель. Ширина последней составляет примерно 200-500 Å. Она заполнена межклеточной жидкостью, которая по солевому составу приближается к солевому составу плазмы крови. Медиатор быстро диффундирует через щель, воздействуя на мембрану иннервируемой (мышечной, нервной или железистой) клетки.

Та часть мембраны этой клетки, которая непосредственно граничит с нервным окончанием, называется постсинаптической мембраной (в нервно-мышечном соединении нервное окончание и постсинаптическую мембрану называют часто концевой, или двигательной, пластинкой). Постсинаптическая мембрана по своим свойствам отличается от мембраны, покрывающей остальную часть клетки. Главное отличие состоит в том, что она обладает очень высокой химической чувствительностью к медиатору и невозбудима по отношению к электрическому току.

На взаимодействии медиатора с постсинаптической мембраной и основан механизм сннаптической передачи возбуждения.

Наличие химического звена в механизме этой передачи делает понятным два общих свойства синапсов:

  1. односторонность проведения возбуждения через синапсы (в отличие от двустороннего проведения в нервных волокнах)
  2. наличие синаптической задержки.

Односторонность проведения в нервно-мышечных синапсах связана с тем, что медиатор, выделяющийся нервным окончанием, возбуждает постсинаптическую мембрану мышечного волокна, железистой клетки и нервной клетки. Потенциал же действия, возникающий в мышечном волокне, в нервной или железистой клетке, вследствие наличия синаптической щели не может возбудить нервные окончания и нервные волокна.

Синоптическая задержка, т. е. замедление проведения возбуждения при передаче через синапс, определяется главным образом временем диффузии медиатора от мембраны нервного окончания к мембране мышечного волокна. В нервно-мышечном соединении синаптическая задержка равна примерно 1-3 мсек. В нервных окончаниях в гладкой мышце синаптическая задержка больше, чем в нервных окончаниях в скелетной мышце.

Синапс представляет собой место функционального, а не физического контакта между нейронами; в нем происходит передача информации от одной клетки к другой. Обычно встречаются синапсы между концевыми веточками аксона одного нейрона и дендритами (аксодендритные синапсы) или телом (аксосоматические синапсы) другого нейрона. Число синапсов, как правило, очень велико, что обеспечивает большую площадь для передачи информации. Например, на дендритах и телах отдельных мотонейронов спинного мозга находится свыше 1000 синапсов. Некоторые клетки головного мозга могут иметь до 10000 синапсов (рис. 16.8).

Существуют два типа синапсов - электрические и химические - в зависимости от природы проходящих через них сигналов. Между окончаниями двигательного нейрона и поверхностью мышечного волокна существует нервно-мышечное соединение , отличающееся по строению от межнейронных синапсов, но сходное с ними в функциональном отношении. Структурные и физиологические различия между обычным синапсом и нервно-мышечным соединением будут описаны несколько позже.

Строение химического синапса

Химические синапсы - наиболее распространенный тип синапса у позвоночных. Это луковицеобразные утолщения нервных окончаний, называемые синаптическими бляшками и расположенные в непосредственной близости от окончания дендрита. Цитоплазма синаптической бляшки содержит митохондрии, гладкий эндоплазматический ретикулум, микрофиламенты и многочисленные синаптические пузырьки . Каждый пузырек имеет в диаметре около 50 нм и содержит медиатор - вещество, с помощью которого нервный сигнал передается через синапс. Мембрана синаптической бляшки в области самого синапса утолщена в результате уплотнения цитоплазмы и образует пресинаптическую мембрану . Мембрана дендрита в области синапса также утолщена и образует постсинаптическую мембрану . Эти мембраны разделены промежутком - синаптической щелью шириной около 20 нм. Пресинаптическая мембрана устроена таким образом, что к ней могут прикрепляться синаптические пузырьки и выделяться в синаптическую щель медиаторы. Постсинаптическая мембрана содержит крупные белковые молекулы, действующие как рецепторы медиаторов, и многочисленные каналы и поры (обычно закрытые), через которые в постсинаптический нейрон могут поступать ионы (см. рис. 16.10, А).

Синаптические пузырьки содержат медиатор, который образуется либо в теле нейрона (и попадает в синаптическую бляшку, пройдя через весь аксон), либо непосредственно в синаптической бляшке. В обоих случаях для синтеза медиатора нужны ферменты, образующиеся в теле клетки на рибосомах. В синаптической бляшке молекулы медиатора "упаковываются" в пузырьки, в которых они хранятся до момента высвобождения. Основные медиаторы нервной системы позвоночных - ацетилхолин и норадреналин , но существуют и другие медиаторы, которые будут рассмотрены позже.

Ацетилхолин - аммонийное производное, формула которого приведена на рис. 16.9. Это первый из известных медиаторов; в 1920 г. Отто Леви выделил его из окончаний парасимпатических нейронов блуждающего нерва в сердце лягушки (разд. 16.2). Структура норадреналина подробно рассматривается в разд. 16.6.6. Нейроны, высвобождающие ацетилхолин, называются холинэргическими , а высвобождающие норадреналин - адренэргическими .

Механизмы синаптической передачи

Как полагают, прибытие нервного импульса в синаптическую бляшку вызывает деполяризацию пресинаптической мембраны и повышение ее проницаемости для ионов Са 2+ . Входящие в синаптическую бляшку ионы Са 2+ вызывают слияние синаптических пузырьков с пресинаптической мембраной и выход их содержимого из клетки (экзоцитоз) , в результате чего оно попадает в синаптическую щель. Весь этот процесс называют электросекреторным сопряжением . После высвобождения медиатора материал пузырьков используется для образования новых пузырьков, заполняемых молекулами медиатора. Каждый пузырек содержит около 3000 молекул ацетилхолина.

Молекулы медиатора диффундируют через синаптическую щель (этот процесс занимает около 0,5 мс) и связываются с находящимися на постсинаптической мембране рецепторами, способными узнавать молекулярную структуру ацетилхолина. При связывании молекулы рецептора с медиатором ее конфигурация меняется, что приводит к открытию ионных каналов и поступлению в постсинаптическую клетку ионов, вызывающих деполяризацию или гиперполяризацию (рис. 16.4,А) ее мембраны в зависимости от природы высвобождаемого медиатора и строения молекулы рецептора. Молекулы медиатора, вызвавшие изменение проницаемости постсинаптической мембраны, сразу же удаляются из синаптической щели либо путем их реабсорбции пресинаптической мембраной, либо путем диффузии из щели или ферментативного гидролиза. В случае холинэргических синапсов находящийся в синаптической щели ацетилхолин гидролизуется ферментом ацетилхолинэстеразой , локализованным на постсинаптической мембране. В результате гидролиза образуется холин, он всасывается обратно в синаптическую бляшку и вновь превращается там в ацетилхолин, который хранится в пузырьках (рис. 16.10).

В возбуждающих синапсах под действием ацетилхолина открываются специфические натриевые и калиевые каналы, и ионы Na + входят в клетку, а ионы К + выходят из нее в соответствии с их концентрационными градиентами. В результате происходит деполяризация постсинаптической мембраны. Эту деполяризацию называют возбудительным постсинаптическим потенциалом (ВПСП). Амплитуда ВПСП обычно невелика, но продолжительность его больше, чем у потенциала действия. Амплитуда ВПСП меняется ступенчатым образом, и это позволяет предполагать, что медиатор освобождается порциями, или "квантами", а не в виде отдельных молекул. По-видимому, каждый квант соответствует освобождению медиатора из одного синаптического пузырька. Одиночный ВПСП не способен, как правило, вызвать деполяризацию пороговой величины, необходимой для возникновения потенциала действия. Но деполяризующие эффекты нескольких ВПСП складываются, и это явление носит название суммации . Два или больше ВПСП, возникших одновременно в разных синапсах одного и того же нейрона, могут сообща вызвать деполяризацию, достаточную для возбуждения потенциала действия в постсинаптическом нейроне. Это называют пространственной суммацией . Быстро повторяющееся высвобождение медиатора из пузырьков одной и той же синаптической бляшки под действием интенсивного стимула вызывает отдельные ВПСП, которые следуют так часто один за другим во времени, что их эффекты тоже суммируются и вызывают в постсинаптическом нейроне потенциал действия. Это называется временной суммацией . Таким образом, импульсы могут возникать в одиночном постсинаптическом нейроне либо как результат слабой стимуляции нескольких связанных с ним пресинаптических нейронов, либо как результат повторной стимуляции одного из его пресинаптических нейронов. В тормозных синапсах высвобождение медиатора повышает проницаемость постсинаптической мембраны за счет открытия специфических каналов для ионов К + и Сl - . Перемещаясь по концентрационным градиентам, эти ионы вызывают гиперполяризацию мембраны, называемую тормозным постсинаптическим потенциалом (ТПСП).

Медиаторы сами по себе не обладают возбуждающими или тормозящими свойствами. Например, ацетилхолин оказывает возбуждающее действие в большинстве нервно-мышечных соединений и других синапсов, но вызывает торможение в нервно-мышечных соединениях сердца и висцеральной мускулатуры. Эти противоположные эффекты обусловлены теми событиями, которые развертываются на постсинаптической мембране. От молекулярных свойств рецептора зависит, какие ионы будут входить в постсинаптический нейрон, а эти ионы в свою очередь определяют характер изменения постсинаптических потенциалов, как описано выше.

Электрические синапсы

У многих животных, в том числе у кишечнополостных и позвоночных, передача импульсов через некоторые синапсы осуществляется путем прохождения электрического тока между пре- и постсинаптическими нейронами. Ширина щели между этими нейронами составляет всего лишь 2 нм, и суммарное сопротивление току со стороны мембран и жидкости, заполняющей щель, очень мало. Импульсы проходят через синапсы без задержки, и на их передачу не действуют лекарственные вещества или другие химические препараты.

Нервно-мышечное соединение

Нервно-мышечное соединение представляет собой специализированный вид синапса между окончаниями двигательного нейрона (мотонейрона) и эндомизием мышечных волокон (разд. 17.4.2). Каждое мышечное волокно имеет специализированный участок - двигательную концевую пластинку , где аксон моторного нейрона (мотонейрона) разветвляется, образуя немиелинизированные веточки толщиной около 100 нм, проходящие в неглубоких желобках по поверхности мышечной мембраны. Мембрана мышечной клетки - сарколемма - образует множество глубоких складок, называемых постсинаптическими складками (рис. 16.11). Цитоплазма окончаний мотонейрона сходна с содержимым синаптической бляшки и во время стимуляции освобождает ацетилхолин с помощью того же механизма, о котором говорилось выше. Изменения конфигурации молекул - рецепторов, находящихся на поверхности сарколеммы, ведут к изменению ее проницаемости для Na + и К + , и в результате происходит местная деполяризация, называемая потенциалом концевой пластинки (ПКП). Эта деполяризация по величине вполне достаточна для возникновения потенциала действия, который распространяется по сарколемме в глубь волокна по системе поперечных трубочек (Т-системе ) (разд. 17.4.7) и вызывает сокращение мышцы.

Функции синапсов и нервно-мышечных соединений

Основная функция межнейронных синапсов и нервно-мышечных соединений состоит в передаче сигнала от рецепторов к эффекторам. Кроме того, строение и организация этих участков химической секреции обусловливают ряд важных особенностей проведения нервного импульса, которые можно резюмировать следующим образом:

1. Однонаправленность передачи. Высвобождение медиатора из пресинаптической мембраны и локализация рецепторов на постсинаптической мембране допускают передачу нервных сигналов по данному пути только в одном направлении, что обеспечивает надежность работы нервной системы.

2. Усиление. Каждый нервный импульс вызывает освобождение в нервно-мышечном синапсе достаточного количества ацетилхолина, чтобы вызвать распространяющийся ответ в мышечном волокне. Благодаря этому нервные импульсы, приходящие к нервно-мышечному соединению, как бы они ни были слабы, могут вызвать реакцию эффектора, и это повышает чувствительность системы.

3. Адаптация, или аккомодация. При непрерывной стимуляции количество освобождающегося в синапсе медиатора постепенно уменьшается до тех пор, пока запасы медиатора не будут истощены; тогда говорят, что синапс утомлен, и дальнейшая передача им сигналов тормозится. Адаптивное значение утомления состоит в том, что оно предотвращает повреждение эффектора вследствие перевозбуждения. Адаптация имеет место также на уровне рецепторов. (См. описание в разд. 16.4.2.)

4. Интеграция. Постсинаптический нейрон может получать сигналы от большого числа возбуждающих и тормозных пресинаптических нейронов (синаптическая конвергенция); при этом постсинаптический нейрон способен суммировать сигналы от всех пресинаптических нейронов. Благодаря пространственной суммации нейрон интегрирует сигналы, поступающие из многих источников, и выдает координированный ответ. В некоторых синапсах имеет место облегчение, состоящее в том, что после каждого стимула синапс становится более чувствительным к следующему стимулу. Поэтому следующие друг за другом слабые стимулы могут вызывать ответ, и это явление используется для повышения чувствительности определенных синапсов. Облегчение нельзя рассматривать как временную суммацию: здесь происходит химическое изменение постсинаптической мембраны, а не электрическая суммация постсинаптических мембранных потенциалов.

5. Дискриминация. Временная суммация в синапсе позволяет отфильтровывать слабые фоновые импульсы, прежде чем они достигнут мозга. Например, экстероцепторы кожи, глаз и ушей постоянно получают из окружающей среды сигналы, не имеющие особого значения для нервной системы: для нее важны лишь изменения интенсивности стимулов, приводящие к увеличению частоты импульсов, которое обеспечивает их передачу через синапс и надлежащую реакцию.

6. Торможение. Передача сигналов через синапсы и нервно-мышечные соединения может затормаживаться определенными блокирующими агентами, воздействующими на постсинаптическую мембрану (см. ниже). Возможно и пресинаптическое торможение, если на окончании аксона чуть выше данного синапса оканчивается другой аксон, образующий здесь тормозный синапс. При стимуляции такого тормозного синапса уменьшается число синаптических пузырьков, разряжающихся в первом, возбуждающем синапсе. Такое устройство позволяет изменять воздействие данного пресинаптического нейрона с помощью сигналов, приходящих от другого нейрона.

Химические воздействия на синапс и нервно-мышечное соединение

Химические вещества выполняют в нервной системе множество различных функций. Воздействия одних веществ широко распространены и хорошо изучены (как, например, возбуждающее действие ацетилхолина и адреналина), тогда как эффекты других носят локальный характер и пока еще недостаточно ясны. Некоторые вещества и их функции приведены в табл. 16.2.

Полагают, что некоторые лекарственные препараты, используемые при таких психических нарушениях, как тревожность и депрессия, воздействуют на химическую передачу в синапсах. Многие транквилизаторы и седативные средства (трициклический антидепрессант имипрамин, резерпин, ингибиторы моноаминоксидазы и др.) оказывают свой лечебный эффект, взаимодействуя с медиаторами, их рецепторами или отдельными ферментами. Так, например, ингибиторы моноаминоксидазы подавляют фермент, участвующий в расщеплении адреналина и норадреналина, и скорее всего оказывают свой лечебный эффект при депрессии, увеличивая продолжительность действия этих медиаторов. Галлюциногены типа диэтиламида лизерговой кислоты и мескалина , воспроизводят действие каких-то природных медиаторов мозга или же подавляют действие других медиаторов.

Проводившееся недавно изучение действия некоторых болеутоляющих веществ - опиатов героина и морфина - показало, что в мозгу млекопитающих присутствуют природные (эндогенные) вещества, вызывающие сходный эффект. Все эти вещества, взаимодействующие с опиатными рецепторами, получили общее название эндорфинов . К настоящему времени открыто много таких соединений; из них лучше всего изучена группа относительно небольших пептидов, называемых энкефалинами (мет-энкефалин, β-эндорфин и др.). Считается, что они подавляют болевые ощущения, влияют на эмоции и имеют отношение к некоторым психическим заболеваниям.

Все это открыло новые пути для изучения функций мозга и биохимических механизмов, лежащих в основе воздействия на боль и лечения с помощью таких различных методов, как внушение, гипно? и акупунктура. Предстоит выделить еще много других веществ типа эндорфинов, установить их строение и функции. С их помощью можно будет получить более полное представление о работе мозга, и это лишь вопрос времени, так как методы выделения и анализа веществ, присутствующих в столь малых количествах, непрерывно совершенствуются.

ОТВЕТ: Импульсы передаются с нервного волокна на мышцу с помощью специального контакта – синапса.

Синапс – межклеточный контакт, который служит для передачи возбуждения с нервной клетки на клетку другой возбудимой ткани. Двигательное нервное волокно, входя в мышцу, утончается, теряет миелиновую оболочку и делится на 5 – 10 веточек, которые подходят к мышечному волокну. В месте контакта с мышцей нервное волокно формирует колбообразное расширение – синаптическое окончание. Внутри этого окончания находится много митохондрий, а также специфические органеллы – синаптические пузырьки, содержащие специальное вещество медиатор (в нервно-мышечном синапсе медиатором является ацетилхолин). Синаптическое окончание покрыто пресинаптической мембраной.

Участок мембраны мышечного волокна, который находится напротив пресинаптической мембраны, имеет особое строение и называется постсинаптической мембраной, или концевой пластинкой. Пространство между пре- и постсинаптической мембраной носит название синаптическая щель. В пресинаптической мембране имеются каналы для ионов кальция, которые открываются при снижении мембранного потенциала (деполяризации). В постсинаптической мембране располагаются рецепторы к ацетилхолину, а также фермент холинэстераза, который разрушает ацетилхолин. Рецепторы представляют собой каналы для ионов натрия, которые открываются при взаимодействии с ацетилхолином.

Следует понимать, что пространство внутри синаптического окончания – это внутриклеточная жидкость, которая относится к нейрону. Синаптическая щель – это внеклеточное пространство. Под постсинаптической мембраной находится цитоплазма мышечного волокна, то есть это внутриклеточное пространство.

Механизм передачи возбуждения в синапсах. Передача возбуждения с нерва на мышцу осуществляется в несколько последовательных этапов. Сначала нервный импульс поступает по аксону и вызывает деполяризацию пресинаптической мембраны. Снижение мембранного потенциала приводит к открытию кальциевых каналов. Поскольку концентрация ионов кальция во внеклеточной среде выше, чем во внутриклеточной, они поступает внутрь синаптического окончания (по сути, во внутриклеточное пространство). Ионы кальция взаимодействуют с синаптическимим пузырьками, из-за чего синаптические пузырьки сливаются с пресинаптической мембраной, и медиатор ацетилхолин выходит в синаптическую щель.

Далее ацетилхолин подходит к постсинаптической мембране и взаимодействует с холинорецепторами. Вследствие этого каналы для натрия открываются, натрий устремляется во внутриклеточное пространство. Поступление ионов натрия в цитоплазму мышечного волокна приводит к уменьшению мембранного потенциала (деполяризации) постсинаптической мембраны, и на ней формируется потенциал концевой пластинки (ПКП). Возникновение ПКП, в свою очередь, вызывает генерацию потенциала действия на соседнем участке мембраны мышечного волокна. Ацетилхолин на постсинаптической мембране очень быстро разрушается холинэстеразой, поэтому натриевые каналы почти сразу закрываются. Если бы этого не происходило, постсинаптическая мембрана была бы всё время деполяризована, и передача возбуждения стала бы невозможной.

Таким образом, возбуждение передаётся с нервного волокна на мышечное.

Итак, передача возбуждения с нерва на мышцу осуществляется в следующей последовательности:

1. Распространение импульса по нервному волокну.

2. Деполяризация пресинаптической мембраны.

3. Открытие кальциевых каналов и поступление ионов кальция в синаптическое окончание.

4. Выделение медиатора в синаптическую щель.

5. Взаимодействие медиатора с холинорецепторами на постсинаптической мембране.

6. Открытие натриевых каналов на постсинаптической мембране.

7. Возникновение потенциала концевой пластинки.

8. Генерация потенциала действия на мембране мышечного волокна.

Основным свойством синапса является проведение возбуждения только в одну сторону: от пресинаптической мембраны к постсинаптической. В обратном направлении импульс передаваться не может. Передача возбуждения в синапсе осуществляется с задержкой.

Нервно-мышечный синапс образован окончанием аксона моторного нейрона и мышечным волокном поперечно-полосатой мускулатуры.

Структурами, непосредственно образующими синапс, являются пресинаптическая мембрана аксонной терминали, синаптическая щель и постсинантическая мембрана, являющаяся частью плазматической мембраны (сарколеммы) постсинаптической мышечной клетки. Пресинаптической мембраной называют часть не покрытой миелином мембраны аксонной терминали, обращенной в синаптическую щель.

Пресинаптическая терминаль формируется тонкой веточкой аксона, которая, подходя к мышечному волокну, образует утолщение (пуговку, бляшку, бутон). В пресинаптической терминали находятся синаптические пузырьки (везикулы), содержащие запасы медиатора ацетилхолина. Везикул может быть до нескольких тысяч. Их диаметр около 40 им, и в каждой содержится несколько тысяч молекул медиатора. В отсутствие поступления нервных импульсов везикулы с помощью белка синапсина связаны с цитоскелетом и малоподвижны. В пресинаптической терминали имеются также митохондрии, обеспечивающие выработку АТФ, ацетил СоА, белки цитоскелета, микротрубочки и микронити, по которым в терминаль из тела нейрона перемещается фермент ацетилхолинтрансфсраза. При участии этого фермента из ацетил СоА и холина образуется ацетилхолин.

Рис. 1. Строение нервно-мышечного синапса

Отличает нервно-мышечный синапс от центрального синапса большая протяженность пресинаптической мембраны, что способствует экзоцитозу большего количества медиатора. Этого количества медиатора достаточно для того, чтобы один потенциал действия, пришедший по нервному волокну, вызвал возбуждение мышечного волокна. В пресинаптической мембране, уже не покрытой миелиновой оболочкой, содержатся потенциалзависимые кальциевые каналы, преимущественно локализованные вблизи мест расположения везикул с медиатором. Такая локализация кальциевых каналов позволяет, изменяя разность потенциалов на пресинаптической мембране (и тем самым состояние каналов), идеально контролировать зависящий от концентрации кальция процесс высвобождения медиатора.

Между пре- и постсинаптическими мембранами располагается синаптическая щель шириной 50-100 им. Она заполнена межклеточным веществом и содержит тяжи плотного вещества из мукополисахаридов, с которым связана ацетилхолинэстераза (АХЭ) — фермент, разрушающий выходящий в синаптическую щель ацетилхолин на холин и уксусную кислоту.

Постсинаптическую мембрану нервно-мышечного синапса называют также концевой пластинкой. На ней имеются многочисленные впячивания, которые увеличивают площадь этой мембраны и в ней может расположиться до 20 миллионов рецепторных белковых молекул к ацетилхолину. Их плотность достигает 10 000 на 1 нм 2 . Эти белки наряду с выполнением рецепторной функции формируют неселективные лигандзависимые каналы, через которые могут проходить ионы К+ и Na+. Рецепторы чувствительны также к никотину; их полное название — никотинчувствительные ацетилхолиновые рецепторы мышечного типа, или сокращенно н-ХР мт.

Когда нервный импульс, посланный моторным нейроном, распространяется по нервному волокну и достигает пресинаптической терминали, он вызывает деполяризацию ее мембраны.

Деполяризация приводит к открытию встроенных в мембрану потенциалзависимых кальциевых каналов, и ионы Са 2+ " из межклеточного пространства поступают внутрь пресинап- тичсской терминали. Ионы Са 2 перемещаются в терминаль по градиенту концентрации, так как снаружи аксонной терминали содержание кальция в 10 000 раз больше, чем внутри. Содержание кальция в цитоплазме терминали повышается, и это приводит к запуску ряда событий, необходимых для высвобождения ацетилхолина в синаптическую щель. Среди них отшнуровывание везикул от эндосом, приближение их к преси- наптической мембране, слияние с мембраной и экзоцитоз квантов ацетилхолина в синаптическую щель (рис. 2).

При поступлении к аксонной терминали одного ПД в синаптическую щель выбрасывается ацетилхолин из десятков синаптических пузырьков. Количество выделяемого АЦХ пропорционально величине и продолжительности деполяризации пресинаптической мембраны, которая в свою очередь определяется частотой и количеством поступивших по аксону нервных импульсов.

Молекулы ацетилхолина за время около 0,2 мс диффундируют к постсинаптической мембране и связываются с н-холинорецепторами, которые выполняют роль ворот в несслек- тивных лигандзависимых ионных каналах, проницаемых для ионов Na+ и К+. Ворота открываются, и через ионные каналы внутрь мышечного волокна начинают входить ионы Na+, а из волокна выходить ионы КЛ Поток входящих ионов Na+ больше, чем поток выходящих ионов К+, так как ионы Na+ идут не только но градиенту концентрации, но и но градиенту электрического поля (на внутренней стороне мембраны отрицательный заряд до — 90 мВ).

Рис. 2. Структура нервно-мышечного синапса в покое и при активации

Положительно заряженные ионы Na+, входящие в мышечное волокно, деполяризуют постсинаптическую мембрану, нейтрализуя часть отрицательных зарядов на ее внутренней стороне. Амплитуда деполяризации зависит от количества выделившегося АЦХ и, следовательно, от числа нервных импульсов, поступивших к мышечному волокну от иннервирующего его мотонейрона. Она может достигать 40-50 мВ, длиться около 1 мс и сменяется реполяризацией за счет выхода из постсинаптической клетки катионов К. Возникающая деполяризация не сопровождается перезарядкой постсинаптической мембраны и развитием на ней ПД.

Кратковременное (около 4 мс) уменьшение разности потенциалов (деполяризация) постсинаптической мембраны нервно-мышечного синапса называют потенциалом концевой пластанки (ПКП). По характеру влияния на постсинаптическую клетку он аналогичен ВПСП. Деполяризация постсинаптической мембраны приводит к возникновению локального кругового электрического тока между нею и сарколеммой, граничащей с синапсом. В сарколемме, прилежащей к синапсу, имеются потенциалзависимые селекгивные быстрые натриевые и медленные калиевые каналы. Под действием локальных токов сарколемма деполяризуется и, если уровень деполяризации достигает Е к , каналы открываются и на граничащем с синапсом участке сарколеммы возникает потенциал действия.

В естественных условиях при поступлении нервных импульсов и их успешном проведении через нервно-мышечный синапс, амплитуда возникающего ПКП всегда превышает пороговый уровень, необходимый для генерации ПД на сарколемме. Возникший ПД распространяется вдоль мышечного волокна по сарколемме и вглубь его по мембранам поперечных трубочек, пронизывающих волокно.

Почему же потенциал действия возникает на прилежащей к синапсу мембране, а не па постсинаптической мембране? Постсинаптическая мембрана не может генерировать ПД, так как на ней нет потенциалзави- симых натриевых каналов, которые обеспечивают быстрый вход ионов Na+ и перезарядку мембраны. Перезарядке противодействуют также выходящие из постсинаптической клетки ионы К+. В то же время вход натрия, движимый силами его концентрационного и электрического градиентов, опережает выход калия, который обусловлен действием только сил концентрационного градиента калия и осуществляется против сил электрического поля. Вход натрия в мышечное волокно, опережающий выход калия, создает условия для кратковременной деполяризации постсинаптической мембраны и последующей ее реполяризации, т.е. для возникновения ПКП.

Ионные каналы постсинаптической мембраны остаются открытыми, пока концентрация ацетилхолина в синаптической щели не понизится примерно до 10 нмолей. Снижение концентрации АЦХ в синаптической щели в нормальных условиях происходит под действием фермента ацетилхолинэстеразы (АХЭ). Значение АХЭ для нормальной работы нервно-мышечного синапса чрезвычайно велико. Для того чтобы идущие от мотонейронов друг за другом нервные импульсы могли оказывать на рецепторы постсинаптической мембраны активирующее действие, необходимо к моменту поступления очередного импульса удалить из синаптической щели предшествующую порцию медиатора главным образом путем разрушения.

Когда содержание медиатора понизится до уровня 10 нмолей, ацетилхолин диссоциирует из связи с рецептором, восстанавливается способность рецепторов связываться с новой порцией АЦХ и открывать лигандзависимые ионные каналы. Синапс становится готовым к передаче нового сигнала. В устранении молекул ацетилхолина из синаптической щели также имеют значение обратный захват продукта его расщепления (холина) пресинаптической мембраной в пресинаптическую терминаль, диффузия АЦХ в интерстициальнос пространство и далее в кровь. Время от момента прихода ПД к пресинаптической мембране до момента возникновения ПД на мембране мышечного волокна называют синаптической задержкой. В нервно-мышечном синапсе она составляет около 1 мс.

В состоянии покоя наблюдается спонтанное высвобождение (экзоцитоз) ацетилхолина в синаптическую щель. Объем экзоцитируемого медиатора составляет около 1 кванта в секунду, что эквивалентно количеству АЦХ, высвобождаемого из одной везикулы. Выход медиатора в этом объеме способен вызвать лишь малую (0,1-0,2 мВ) деполяризацию постсинап- тической мембраны (миниатюрный потенциал концевой пластинки), и его недостаточно для инициации сокращения мышцы. Однако считается, что спонтанный выход этого небольшого количества медиатора имеет важное значение для трофического влияния АЦХ на постсинаптичсскую мышечную клетку: стимуляции синтеза каналообразующих рецепторных белков, регуляции обменных процессов в клетке, поддержания ее тканевой специфичности.

Таким образом, в нервно-мышечном синапсе сигнал электрической природы (нервный импульс) преобразуется в химический сигнал — высвобождение нейромедиатора АЦХ, который через цепочку последовательных событий на постсинаптической мембране вновь обеспечивает возникновение электрического потенциала на мембране мышечного волокна в виде ПД. Этот потенциал является непосредственной причиной инициирования сокращения постсинаптической мышечной клетки.

Имеется много факторов, способных влиять на состояние синаптической передачи сигналов к скелетным мышцам. Это влияние можно наблюдать в условиях патологии, например при отравлении ботулиническим токсином С — одним из продуктов метаболизма анаэробного микроорганизмаClostridium botu inum , другими ядами растительного и животного происхождения. При попадании в организм ботулинического токсина он накапливается в аксонных терминалях нервно-мышечных синапсов и, обладая свойствами фермента цинкзависимой эндопептидазы, разрушает белки, участвующие в эк- зоцитозе ацетилхолина. Нейромышечная передача команд моторных нейронов к мышцам становится неэффективной или прекращается. Это может вести к развитию парезов, параличей скелетных мышц, нарушению глотания, дыхания и в случаях тяжелого отравления — к остановке дыхания.

С другой стороны, ряд веществ, способных влиять на различные этапы синаптической передачи, используется в качестве лекарственных. Так, если ботулинический токсин (ботокс) ввести в низких концентрациях в мышцу с повышенным тонусом, развившемся вследствие ее избыточной активации нервными импульсами, часто поступающими от мотонейронов, то дозированное снижение эффективности синаптической передачи может помочь снизить повышенный тонус, восстановить координацию движений. В настоящее время ботокс применяют для снижения степени тонического напряжения наружных глазных и других поперечно-полосатых мышц, например при косоглазии, кривошее, других спастических состояниях мышц.

Следующий способ воздействия на синаптическую передачу также связан с влиянием на количество ацетилхолина в синаптической щели через управление скоростью его расщепления под действием фермента АХЭ. Он реализуется с помощью применения веществ, ингибирующих ферментативную активность АХЭ. Ими являются вещества, обратимо ингибирующие активность АХЭ (лекарственные вещества эзерин, прозерин, галангамин, физостигмин и др.). Эти вещества, блокируя активность АХЭ, способствуют снижению скорости расщепления АЦХ и его накоплению в синаптической щели, пролонгированию и усилению действия АЦХ во всех холинергических, в том числе и нервно-мышечных, синапсах. Применение (в небольших дозах) блокаторов активности АХЭ обратимого действия позволяет облегчить передачу сигналов к мышце, повысить ее тонус и усилить сокращение. Их введение в организм в небольших дозах улучшает синаптическую передачу и оказывает лечебный эффекг при многих неврологических заболеваниях, в частности при миастении(myastenia gravis ).

Однако передозировка этих веществ или применение веществ, необратимо ингибирующих АХЭ — инсектицидов, боевых отравляющих веществ нервно-паралитического действия (соединения фосфорорганической природы — зарин, зоман), сопровождается накоплением в синапсе большого количества АЦХ. Это ведет к десенситизации н-холинорецепторов, развитию стойкой, продолжительной деполяризации постсинаптической мембраны, невозможности дальнейшей генерации ПД на мембране мышечного волокна, блокаде передачи сигналов к скелетным мышцам, их расслаблению, парезам, нарушению или остановке дыхания.

Ряд веществ может легко связываться с никотинчувствительными холинорецепторами и блокировать при этом открытие лигандзависимых ионных каналов. Это, например, такие вещества, как кураре, D-тубокурарин, и вещества, входящие в состав ядов — кобратоксин, а-бунгаротоксин. Примененние кураре и курареподобных веществ позволяет, заблокировав взаимодействие АЦХ с холинорецепторами постсинаптической мембраны, вызывать блокаду передачи сигнала от мотонейронов к мышечным волокнам, расслабление мышц во время хирургических операций (миорелаксация) или при повышении их тонического напряжения при спастичесих состояних.

При некоторых аутоиммунных заболеваниях, например приmyastenia gravis , в организме вырабатываются антитела к ацетилхолиновым рецепторам постсинаптической мембраны нервно-мышечных синапсов. Антитела могут блокировать рецепторы и разрушать их. В этих условиях даже при высвобождении достаточного количества АЦХ из нервного окончания амплитуда постсинаптичсского потенциала часто не достигает величины, необходимой для генерации ПД на мембране мышечного волокна. Вследствие длительного нарушения нервно-мышечной передачи развиваются слабость и повышенная утомляемость мышц. Введение больным миастенией ботокса или блокаторов АХЭ обратимого действия, улучшающих нервно-мышечную передачу, даже при сниженном количестве рецепторов приводит к повышению силы сокращения и работоспособности мышц.



effenergy.ru - Тренировки, питание, экипировка