Обращение десятичной дроби в простую и обратно.

Дробь может быть преобразована в целое число либо в десятичную дробь. Неправильная дробь, числитель которой больше знаменателя и делится на него без остатка, переводится в целое число, например: 20/5. Делим 20 на 5 и получаем число 4. Если дробь правильная, то есть числитель меньше знаменателя, то тогда преобразовать ее в число (десятичную дробь). Больше информации о дробях вы сможете почерпнуть из нашего раздела - .

Способы преобразования дроби в число

  • Первый способ, как перевести дробь в число годится для дроби, которую можно преобразовать в число, являющееся десятичной дробью. Сначала выясним, можно ли перевести заданную дробь в дробь десятичную. Для этого обратим внимание на знаменатель (цифра, которая под чертой или справа от наклонной). Если знаменатель можно разложить на множители (в нашем примере - 2 и 5), которые могут повторяться, то данную дробь реально преобразовать в конечную десятичную дробь. Например: 11/40 =11/(2∙2∙2∙5). Данная обыкновенная дробь переведется в число (десятичную дробь) с конечным количеством знаков после запятой. А вот дробь 17/60 =17/(5∙2∙2∙3) переведется в число с бесконечным количеством знаков после запятой. То есть при точном вычислении числового значения довольно трудно определить конечный знак после запятой, поскольку таких знаков бесконечное множество. Поэтому для решения задач обычно требуется округлить значение до сотых или тысячных. Дальше - необходимо умножить и числитель, и знаменатель на такое число, чтобы в знаменателе получились цифры 10, 100, 1000 и т. д. Например: 11/40 =(11∙25)/(40∙25) =275/1000 =0,275
  • Второй способ, как перевести дробь в число - более простой: необходимо числитель поделить на знаменатель. Для применения этого способа просто произведем деление, а полученное число и будет той искомой десятичной дробью. Например, надо перевести дробь 2/15 в число. Делим 2 на 15. Получаем 0, 1333… - бесконечная дробь. Записываем так: 0,13(3). Если дробь неправильная, то есть числитель больше знаменателя (например, 345/100), то в результате преобразования ее в число получится целое числовое значение или десятичная дробь с целой дробной частью. В нашем примере это будет 3,45. Чтобы преобразовать смешанную дробь такого вида, как 3 2 / 7 , в число, то нужно сначала превратить ее в неправильную дробь: (3∙7+2)/7 =23/7. Далее делим 23 на 7 и получаем число 3,2857143, которое сокращаем до 3,29.

Самый простой способ по переводу дроби в число - это использование калькулятора или иного вычислительного прибора. Укажем сначала числитель дроби, потом нажмем кнопку со значком "разделить" и набираем знаменатель. После нажатия клавиши "=" мы получаем искомое число.

Десятичная дробь состоит из двух частей, которые разделены запятыми. Первая часть - это целая единица, вторая часть - это десятки (если число после запятой одно), сотни (два числа после запятой, как два нуля в ста), тысячные итд. Посмотрим на примеры десятичной дроби: 0, 2; 7, 54; 235,448; 5,1; 6,32; 0,5. Всё это - десятичные дроби. Как же перевести десятичную дробь в обыкновенную?

Пример первый

У нас есть дробь, к примеру, 0,5. Как уже выше писалось, она состоит из двух частей. Первое число 0, показывает, сколько целых единиц у дроби. В нашем случае их нет. Второе число показывает десятки. Дробь даже читается ноль целых пять десятых. Десятичное число перевести в дробь теперь не составит труда, пишем 5/10. Если видите, что у цифр есть общий делитель, можете сократить дробь. У нас это число 5, поделив обе части дроби на 5, получаем - 1/2.

Пример второй

Возьмем более сложную дробь - 2,25. Читается она так - две целых и двадцать пять сотых. Обратите внимание - сотых, так как чисел после запятой две. Теперь можно перевести в обыкновенную дробь. Записываем - 2 25/100. Целая часть - 2, дробная 25/100. Как и в первом примере, эту часть можно сократить. Общим делителем для цифр 25 и 100 является число 25. Заметьте, что мы всегда подбираем наибольший общий делитель. Разделив обе части дроби на НОД, получили 1/4. Итак, 2, 25 это 2 1/4.

Пример третий

И для закрепления материала возьмем десятичную дробь 4,112 - четыре целых и сто двенадцать тысячных. Почему тысячных, думаю, ясно. Записываем теперь 4 112/1000. По алгоритму находим НОД чисел 112 и 1000. В нашем случае - это число 6. Получаем 4 14/125.

Вывод

  1. Разбиваем дробь на целую и дробную части.
  2. Смотрим, сколько цифр после запятой. Если одна - это десятки, две - сотни, три -тысячные итд.
  3. Записываем дробь в обыкновенном виде.
  4. Сокращаем числитель и знаменатель дроби.
  5. Записываем полученную дробь.
  6. Выполняем проверку, делим верхнюю часть дроби на нижнюю. Если есть целая часть, прибавляем к полученной десятичной дроби. Получился исходный вариант - замечательно, значит, вы все сделали правильно.

На примерах я показала, как можно перевести десятичную дробь в обыкновенную. Как видите, сделать это очень легко и просто.


В этой статье мы разберем, как осуществляется перевод обыкновенных дробей в десятичные дроби , а также рассмотрим обратный процесс – перевод десятичных дробей в обыкновенные дроби. Здесь мы озвучим правила обращения дробей и приведем подробные решения характерных примеров.

Навигация по странице.

Перевод обыкновенных дробей в десятичные дроби

Обозначим последовательность, в которой мы будем разбираться с переводом обыкновенных дробей в десятичные дроби .

Сначала мы рассмотрим, как обыкновенные дроби со знаменателями 10, 100, 1 000, … представить в виде десятичных дробей . Это объясняется тем, что десятичные дроби по сути являются компактной формой записи обыкновенных дробей со знаменателями 10, 100, … .

После этого мы пойдем дальше и покажем, как любую обыкновенную дробь (не только со знаменателями 10, 100, … ) записать в виде десятичной дроби. При таком обращении обыкновенных дробей получаются как конечные десятичные дроби, так и бесконечные периодические десятичные дроби.

Теперь обо всем по порядку.

Перевод обыкновенных дробей со знаменателями 10, 100, … в десятичные дроби

Некоторые правильные обыкновенные дроби перед переводом в десятичные дроби нуждаются в «предварительной подготовке». Это касается обыкновенных дробей, количество цифр в числителе которых меньше, чем количество нулей в знаменателе. Например, обыкновенную дробь 2/100 нужно предварительно подготовить к переводу в десятичную дробь, а дробь 9/10 в подготовке не нуждается.

«Предварительная подготовка» правильных обыкновенных дробей к переводу в десятичные дроби заключается в дописывании слева в числителе такого количества нулей, чтобы там общее количество цифр стало равно количеству нулей в знаменателе. Например, дробь после дописывания нулей будет иметь вид .

После подготовки правильной обыкновенной дроби можно приступать к ее обращению в десятичную дробь.

Дадим правило перевода правильной обыкновенной дроби со знаменателем 10, или 100, или 1 000, … в десятичную дробь . Оно состоит из трех шагов:

  • записываем 0 ;
  • после него ставим десятичную запятую;
  • записываем число из числителя (вместе с дописанными нулями, если мы их дописывали).

Рассмотрим применение этого правила при решении примеров.

Пример.

Переведите правильную обыкновенную дробь 37/100 в десятичную.

Решение.

В знаменателе находится число 100 , в записи которого два нуля. В числителе находится число 37 , в его записи две цифры, следовательно, эта дробь не нуждается в подготовке к переводу в десятичную дробь.

Теперь записываем 0 , ставим десятичную запятую, и записываем число 37 из числителя, при этом получаем десятичную дробь 0,37 .

Ответ:

0,37 .

Для закрепления навыков перевода правильных обыкновенных дробей с числителями 10, 100, … в десятичные дроби разберем решение еще одного примера.

Пример.

Запишите правильную дробь 107/10 000 000 в виде десятичной дроби.

Решение.

Количество цифр в числителе равно 3 , а количество нулей в знаменателе равно 7 , поэтому данная обыкновенная дробь нуждается в подготовке к переводу в десятичную. Нам нужно дописать 7-3=4 нуля слева в числителе, чтобы общее количество цифр там стало равно количеству нулей в знаменателе. Получаем .

Осталось составить нужную десятичную дробь. Для этого, во-первых, записываем 0 , во-вторых, ставим запятую, в-третьих, записываем число из числителя вместе с нулями 0000107 , в итоге имеем десятичную дробь 0,0000107 .

Ответ:

0,0000107 .

Неправильные обыкновенные дроби не нуждаются в подготовке при переводе в десятичные дроби. Следует придерживаться следующего правила перевода неправильных обыкновенных дробей со знаменателями 10, 100, … в десятичные дроби :

  • записываем число из числителя;
  • отделяем десятичной запятой столько цифр справа, сколько нулей в знаменателе исходной дроби.

Разберем применение этого правила при решении примера.

Пример.

Переведите неправильную обыкновенную дробь 56 888 038 009/100 000 в десятичную дробь.

Решение.

Во-первых, записываем число из числителя 56888038009, во-вторых, отделяем десятичной запятой 5 цифр справа, так как в знаменателе исходной дроби 5 нулей. В итоге имеем десятичную дробь 568 880,38009 .

Ответ:

568 880,38009 .

Для обращения в десятичную дробь смешанного числа , знаменателем дробной части которого является число 10 , или 100 , или 1 000, … , можно выполнить перевод смешанного числа в неправильную обыкновенную дробь, после чего полученную дробь обратить в десятичную дробь. Но можно пользоваться и следующим правилом перевода смешанных чисел со знаменателем дробной части 10, или 100, или 1 000, … в десятичные дроби :

  • при необходимости выполняем «предварительную подготовку» дробной части исходного смешанного числа, дописав необходимое количество нулей слева в числителе;
  • записываем целую часть исходного смешанного числа;
  • ставим десятичную запятую;
  • записываем число из числителя вместе с дописанными нулями.

Рассмотрим пример, при решении которого выполним все необходимые шаги для представления смешанного числа в виде десятичной дроби.

Пример.

Переведите смешанное число в десятичную дробь.

Решение.

В знаменателе дробной части 4 нуля, в числителе же находится число 17 , состоящее из 2 цифр, поэтому, нам нужно дописать два нуля слева в числителе, чтобы там число знаков стало равно числу нулей в знаменателе. Выполнив это, в числителе окажется 0017 .

Теперь записываем целую часть исходного числа, то есть, число 23 , ставим десятичную запятую, после которой записываем число из числителя вместе с дописанными нулями, то есть, 0017 , при этом получаем искомую десятичную дробь 23,0017 .

Запишем все решение кратко: .

Несомненно, можно было сначала представить смешанное число в виде неправильной дроби, после чего перевести ее в десятичную дробь. При таком подходе решение выглядит так: .

Ответ:

23,0017 .

Перевод обыкновенных дробей в конечные и бесконечные периодические десятичные дроби

В десятичную дробь можно перевести не только обыкновенные дроби со знаменателями 10, 100, … , но обыкновенные дроби с другими знаменателями. Сейчас мы разберемся, как это делается.

В некоторых случаях исходная обыкновенная дробь легко приводится к одному из знаменателей 10 , или 100 , или 1 000, … (смотрите приведение обыкновенной дроби к новому знаменателю), после чего не составляет труда полученную дробь представить в виде десятичной дроби. Например, очевидно, что дробь 2/5 можно привести к дроби со знаменателем 10 , для этого нужно числитель и знаменатель умножить на 2 , что даст дробь 4/10 , которая по правилам, разобранным в предыдущем пункте, легко переводится в десятичную дробь 0,4 .

В остальных случаях приходится использовать другой способ перевода обыкновенной дроби в десятичную, к рассмотрению которого мы и переходим.

Для обращения обыкновенной дроби в десятичную дробь выполняется деление числителя дроби на знаменатель, числитель предварительно заменяется равной ему десятичной дробью с любым количеством нулей после десятичной запятой (об этом мы говорили в разделе равные и неравные десятичные дроби). При этом деление выполняется так же, как деление столбиком натуральных чисел , а в частном ставится десятичная запятая, когда заканчивается деление целой части делимого. Все это станет понятно из решений примеров, приведенных ниже примеров.

Пример.

Переведите обыкновенную дробь 621/4 в десятичную дробь.

Решение.

Число в числителе 621 представим в виде десятичной дроби, добавив десятичную запятую и несколько нулей после нее. Для начала допишем 2 цифры 0 , позже, при необходимости, мы всегда можем добавить еще нулей. Итак, имеем 621,00 .

Теперь выполним деление столбиком числа 621,000 на 4 . Первые три шага ничем не отличаются от деления столбиком натуральных чисел, после них приходим к следующей картине:

Так мы добрались до десятичной запятой в делимом, а остаток при этом отличен от нуля. В этом случае в частном ставим десятичную запятую, и продолжаем деление столбиком, не обращая внимания на запятые:

На этом деление закончено, а в результате мы получили десятичную дробь 155,25 , которая соответствует исходной обыкновенной дроби.

Ответ:

155,25 .

Для закрепления материала рассмотрим решение еще одного примера.

Пример.

Переведите обыкновенную дробь 21/800 в десятичную дробь.

Решение.

Для перевода данной обыкновенной дроби в десятичную, выполним деление столбиком десятичной дроби 21,000… на 800 . Нам после первого же шага придется поставить десятичную запятую в частном, после чего продолжить деление:

Наконец-то мы получили остаток 0 , на этом перевод обыкновенной дроби 21/400 в десятичную дробь закончен, и мы пришли к десятичной дроби 0,02625 .

Ответ:

0,02625 .

Может случиться, что при делении числителя на знаменатель обыкновенной дроби мы так и не получим в остатке 0 . В этих случаях деление можно продолжать сколь угодно долго. Однако, начиная с некоторого шага, остатки начитают периодически повторяться, при этом повторяются и цифры в частном. Это означает, что исходная обыкновенная дробь переводится в бесконечную периодическую десятичную дробь . Покажем это на примере.

Пример.

Запишите обыкновенную дробь 19/44 в виде десятичной дроби.

Решение.

Для перевода обыкновенной дроби в десятичную выполним деление столбиком:

Уже сейчас видно, что при делении начали повторяться остатки 8 и 36 , при этом в частном повторяются цифры 1 и 8 . Таким образом, исходная обыкновенная дробь 19/44 переводится в периодическую десятичную дробь 0,43181818…=0,43(18) .

Ответ:

0,43(18) .

В заключение этого пункта разберемся, какие обыкновенные дроби можно перевести в конечные десятичные дроби, а какие – только в периодические.

Пусть перед нами находится несократимая обыкновенная дробь (если дробь сократимая, то предварительно выполняем сокращение дроби), и нам нужно выяснить, в какую десятичную дробь ее можно перевести – в конечную или периодическую.

Понятно, что если обыкновенную дробь можно привести к одному из знаменателей 10, 100, 1 000, … , то полученную дробь легко перевести в конечную десятичную дробь по правилам, разобранным в предыдущем пункте. Но к знаменателям 10, 100, 1 000 и т.д. приводятся далеко не все обыкновенные дроби. К таким знаменателям можно привести лишь дроби, знаменатели которых являются хотя бы одного из чисел 10, 100, … А какие числа могут быть делителями 10, 100, … ? Ответить на этот вопрос нам позволят чисел 10, 100, … , а они таковы: 10=2·5 , 100=2·2·5·5 , 1 000=2·2·2·5·5·5, … . Отсюда следует, что делителями 10, 100, 1 000 и т.д. могут быть лишь числа, разложения которых на простые множители содержат лишь числа 2 и (или) 5 .

Теперь мы можем сделать общий вывод о переводе обыкновенных дробей в десятичные дроби:

  • если в разложении знаменателя на простые множители присутствуют лишь числа 2 и (или) 5 , то эту дробь можно перевести в конечную десятичную дробь;
  • если кроме двое и пятерок в разложении знаменателя присутствуют другие простые числа, то эта дробь переводится к бесконечную десятичную периодическую дробь.

Пример.

Не выполняя перевод обыкновенных дробей в десятичные, скажите, какие из дробей 47/20 , 7/12 , 21/56 , 31/17 можно перевести в конечную десятичную дробь, а какие - только в периодическую.

Решение.

Разложение на простые множители знаменателя дроби 47/20 имеет вид 20=2·2·5 . В этом разложении присутствуют лишь двойки и пятерки, поэтому эта дробь может быть приведена к одному из знаменателей 10, 100, 1 000, … (в этом примере к знаменателю 100 ), следовательно, может быть переведена в конечную десятичную дробь.

Разложение на простые множители знаменателя дроби 7/12 имеет вид 12=2·2·3 . Так как оно содержит простой множитель 3 , отличный от 2 и 5 , то эта дробь не может быть представлена в виде конечной десятичной дроби, но может быть переведена в периодическую десятичную дробь.

Дробь 21/56 – сократимая, после сокращения она принимает вид 3/8 . Разложение знаменателя на простые множители содержит три множителя, равных 2 , следовательно, обыкновенная дробь 3/8 , а значит и равная ей дробь 21/56 , может быть переведена в конечную десятичную дробь.

Наконец, разложение знаменателя дроби 31/17 представляет собой само 17 , следовательно, эту дробь нельзя обратить в конечную десятичную дробь, но можно обратить в бесконечную периодическую.

Ответ:

47/20 и 21/56 можно перевести в конечную десятичную дробь, а 7/12 и 31/17 - только в периодическую.

Обыкновенные дроби не переводятся в бесконечные непериодические десятичные дроби

Информация предыдущего пункта порождает вопрос: «Может ли при делении числителя дроби на знаменатель получиться бесконечная непериодическая дробь»?

Ответ: нет. При переводе обыкновенной дроби может получиться либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь. Поясним, почему это так.

Из теоремы о делимости с остатком ясно, что остаток всегда меньше делителя, то есть, если мы выполняем деление некоторого целого числа на целое число q , то остатком может быть лишь одно из чисел 0, 1, 2, …, q−1 . Отсюда следует, что после завершения деления столбиком целой части числителя обыкновенной дроби на знаменатель q , не более чем через q шагов возникнет одна из двух следующих ситуаций:

  • либо мы получим остаток 0 , на этом деление закончится, и мы получим конечную десятичную дробь;
  • либо мы получим остаток, который уже появлялся ранее, после этого остатки начнут повторяться как в предыдущем примере (так как при делении равных чисел на q получаются равные остатки, что следует из уже упомянутой теоремы о делимости), так будет получена бесконечная периодическая десятичная дробь.

Других вариантов быть не может, следовательно, при обращении обыкновенной дроби в десятичную дробь не может получиться бесконечная непериодическая десятичная дробь.

Из приведенных в этом пункте рассуждений также следует, что длина периода десятичной дроби всегда меньше, чем значение знаменателя соответствующей обыкновенной дроби.

Перевод десятичных дробей в обыкновенные дроби

Теперь разберемся, как перевести десятичную дробь в обыкновенную. Начнем с перевода конечных десятичных дробей в обыкновенные дроби. После этого рассмотрим метод обращения бесконечных периодических десятичных дробей. В заключение скажем о невозможности перевода бесконечных непериодических десятичных дробей в обыкновенные дроби.

Перевод конечных десятичных дробей в обыкновенные дроби

Получить обыкновенную дробь, которая записана в виде конечной десятичной дроби, достаточно просто. Правило перевода конечной десятичной дроби в обыкновенную дробь состоит из трех шагов:

  • во-первых, записать данную десятичную дробь в числитель, предварительно отбросив десятичную запятую и все нули слева, если они есть;
  • во-вторых, в знаменатель записать единицу и к ней дописать столько нулей, сколько цифр находится после запятой в исходной десятичной дроби;
  • в-третьих, при необходимости выполнить сокращение полученной дроби.

Рассмотрим решения примеров.

Пример.

Обратите десятичную дробь 3,025 в обыкновенную дробь.

Решение.

Если в исходной десятичной дроби убрать десятичную запятую, то мы получим число 3 025 . В нем нет нулей слева, которые бы мы отбросили. Итак, в числитель искомой дроби записываем 3 025 .

В знаменатель записываем цифру 1 и справа к ней дописываем 3 нуля, так как в исходной десятичной дроби после запятой находятся 3 цифры.

Так мы получили обыкновенную дробь 3 025/1 000 . Эту дробь можно сократить на 25 , получаем .

Ответ:

.

Пример.

Выполните перевод десятичной дроби 0,0017 в обыкновенную дробь.

Решение.

Без десятичной запятой исходная десятичная дробь имеет вид 00017 , отбросив нули слева получаем число 17 , которое и является числителем искомой обыкновенной дроби.

В знаменатель записываем единицу с четырьмя нулями, так как в исходной десятичной дроби после запятой 4 цифры.

В итоге имеем обыкновенную дробь 17/10 000 . Эта дробь несократима, и перевод десятичной дроби в обыкновенную закончен.

Ответ:

.

Когда целая часть исходной конечной десятичной дроби отлична от нуля, то ее можно сразу перевести в смешанное число, минуя обыкновенную дробь. Дадим правило перевода конечной десятичной дроби в смешанное число :

  • число до десятичной запятой надо записать как целую часть искомого смешанного числа;
  • в числитель дробной части нужно записать число, полученное из дробной части исходной десятичной дроби после отбрасывания в ней всех нулей слева;
  • в знаменателе дробной части нужно записать цифру 1 , к которой справа дописать столько нулей, сколько цифр находится в записи исходной десятичной дроби после запятой;
  • при необходимости выполнить сокращение дробной части полученного смешанного числа.

Рассмотрим пример перевода десятичной дроби в смешанное число.

Пример.

Представьте десятичную дробь 152,06005 в виде смешанного числа

В школе VIII вида учащиеся знакомятся со следующими преоб­разованиями дробей: выражением дроби в более крупных долях (6-й класс), выражением неправильной дроби целым или смешан­ным числом (6-й класс), выражением дробей в одинаковых долях (7-й класс), выражением смешанного числа неправильной дробью (7-й класс).

Выражение неправильной дроби целым или смешанным числом

I Изучение данного материала следует начать с задания: взять 2 шитых круга и каждый из них разделить на 4 равные доли, подсчи-ь количество четвертых долей (рис. 25). Далее предлагается Писать это количество дробью (т) Затем четвертые доли при-1дываются друг к другу и ученики убеждаются, что получился

1ый круг. Следовательно, -т= 1 . К четырем четвертям добавляет-последовательно еще по -т, и ученики записывают: т=1, -7=1 6 2 7 3 8 9

Учитель обращает внимание учащихся на то, что во всех рас­смотренных случаях они брали неправильную дробь, а в результа­те преобразования получали или целое, или смешанное число, т. е. выражали неправильную дробь целым или смешанным чис­лом. Далее надо стремиться к тому, чтобы учащиеся самостоятель­но определили, каким арифметическим действием это преобразова-" пие можно выполнить. Яркими примерами, приводящими к ответу

4 . 8 0 5 ,1 7 ,3 „ Л

на вопрос, являются: -2-=! и т = 2, 4" = 1т и т Т " ЫВ °Д : чтобы

выразить неправильную дробь целым или смешанным числом, нужно числитель дроби разделить на знаменатель, частное запи­сать целым числом, остаток записать в числитель, а знаменатель оставить тот же. Так как правило громоздкое, совсем не обяза­тельно, чтобы учащиеся заучивали его наизусть. Они должны уметь последовательно рассказать о действиях при выполнении данного преобразования.

Перед тем как познакомить учащихся с выражением непра­вильной дроби целым или смешанным числом, целесообразно по­вторить с ними деление целого числа на целое с остатком.

Закреплению нового для учащихся преобразования способству­ет решение задач жизненно-практического характера, например:

«В вазе лежит девять четвертых долей апельсина. Скол| целых апельсинов можно сложить из этих долей? Сколько чети тых долей останется?»

«Для изготовления крышек для коробочек каждый лист карте

35 разрезают на 16 равных долей. Получили -^. Сколько цел!

листов картона разрезали? Сколько шестнадцатых долей отрез! от следующего куска?» И т. д.

Выражение целого и смешанного числа неправильной дробью

Знакомству учащихся с этим новым преобразованием должп предшествовать решение задач, например:

«2 равных по длине куска ткани, имеющих форму квадрат. > разрезали на 4 равные части. Из каждой такой части сшили платок. Сколько получилось платков?» I Запись: 2= - 1 4^-, 2= -% ]

вин получилось? Запишите: было 1 * круга, стало * круга, значит,

Таким образом, опираясь на наглядно-практическую основу, рассматриваем еще ряд примеров. В рассматриваемых примерах учащимся предлагается сравнить исходное число (смешанное или целое) и число, которое получилось после преобразования (непра­вильная дробь).

Чтобы познакомить учеников с правилом выражения целого и смешанного числа неправильной дробью, надо привлечь их внима­ние к сравнению знаменателей смешанного числа и неправильной дроби, а также к тому, как получается числитель, например:

1 2"=?, 1 = 2", да еще ^, всего ^ 3 ^=?, 3=-^-, да еще ^, всего

будет -^-. В итоге формулируется правило: чтобы смешанное число

выразить неправильной дробью, надо знаменатель умножить на целое число, прибавить к произведению числитель и сумму запи­сать числителем, а знаменатель оставить без изменения.

Вначале нужно упражнять учащихся в выражении неправиль­ной дробью единицы, затем любого другого целого числа с указа­нием знаменателя, а уже затем смешанного числа:

Основное свойство дроби 1

[онятие неизменяемости дроби при одновременном увеличении

1 уменьшении ее членов, т. е. числителя и знаменателя, усваи- 1тся учащимися школы VIII вида с большим трудом. Это поня- Ь необходимо вводить на наглядном и дидактическом материале,

,"ичем важно, чтобы учащиеся не только наблюдали за деятель­ностью учителя, но и сами активно работали с дидактическим материалом и на основе наблюдений и практической деятельности приходили к определенным выводам, обобщению.

Например, учитель берет целую репу, делит ее на 2 равные мсти и спрашивает: «Что получили при делении целой репы

пополам? (2 половины.) Покажите * репы. Разрежем (разделим)

половину репы еще на 2 равные части. Что получим? -у. Запишем:

тт=-т- Сравним числители и знаменатели этих дробей. Во сколько

раз увеличился числитель? Во сколько раз увеличился знамена­тель? Во сколько раз увеличились и числитель, и знаменатель? Изменилась ли дробь? Почему не изменилась? Какими стали доли: крупнее или мельче? Увеличилось или уменьшилось число

Затем все учащиеся делят круг на 2 равные части, каждую половину делят еще на 2 равные части, каждую четверть еще на

2 равные части и т. д. и записывают: "о^А^тг^тгг и т - Л- Потом устанавливают, во сколько раз увеличился числитель и знамена­ тель дроби, изменилась ли дробь. Затем чертят отрезок и делят его последовательно на 3, 6, 12 равных частей и записывают:

1 21 4 При сравнении дробей -^ и -^, -^ и -^ обнаруживается, что

числитель и знаменатель дроби тг увеличивается в одно и то же число раз, дробь от этого не изменяется.

После рассмотрения ряда примеров следует предложить уча­щимся ответить на вопрос: «Изменится ли дробь, если числитель Некоторые знания по теме «Обыкновенные дроби» исключаются из учебных программ по математике в коррекционных школах VIII вида, но они сообщаются учащимся в школах для детей с задержкой психического развития, в классах выравнивания для детей, испытывающих трудности в обучении математике. В данном учебнике параграфы, где дается методика изучения этого материала,

обозначены звездочкой (*).

и знаменатель дроби умножить на одно и то же число (увеличит -в одно и то же число раз)?» Кроме того, надо попросить учащихс самим привести примеры.

Аналогичные примеры приводятся при рассмотрении уменыш ния числителя и знаменателя в одно и то же число раз (числители и знаменатель делятся на одно то же число). Например, кр>"

(4 \ делят на 8 равных частей, берут 4 восьмые доли круга I -о- ]

укрупнив доли, берут четвертые, их будет 2. Укрупнив доли

4 2 1 берут вторые. Их будет 1 : = -д--%- Сравнивают последователь!I

числители и знаменатели этих дробей, отвечая на вопросы: «В<> сколько раз уменьшается числитель и знаменатель? Изменится ли дробь?».

Хорошим пособием являются полосы, разделенные на 12, 6, 3 равные части (рис. 26).

Н

12 6 3 Рис. 26

а основании рассмотренныхпримеров учащиеся могут сде­лать вывод: дробь не изменится, если числитель и знаменатель дроби разделить на одно и то же число (уменьшить в одно и то же число раз). Затем дается обобщенный вывод - основное свойство дроби: дробь не изме­нится, если числитель и знаменатель дроби увеличить или умень шить в одно и то же число раз.

Преобразование обыкновенной дроби в десятичную

Допустим, мы хотим преобразовать обыкновенную дробь 11/4 в десятичную. Проще всего сделать это так:

2∙2∙5∙5

Это удалось нам потому, что в данном случае разложение знаменателя на простые множители состоит только из двоек. Мы дополнили это разложение еще двумя пятерками, воспользовались тем, что 10 = 2∙5, и получили десятичную дробь. Подобная процедура возможна, очевидно, тогда и только тогда, когда разложение знаменателя на простые множители не содержит ничего, кроме двоек и пятерок. Если в разложении знаменателя присутствует любое другое простое число, то такую дробь в десятичную преобразовать нельзя. Тем не менее, мы попробуем это сделать, но только другим способом, с которым мы познакомимся на примере всё той же дроби 11/4. Давайте поделим 11 на 4 «уголком»:

В строке ответа мы получили целую часть ( 2 ), и еще у нас есть остаток ( 3 ). Раньше мы деление на этом заканчивали, но теперь мы знаем, что к делимому ( 11 ) можно приписать справа запятую и несколько нулей, что мы теперь мысленно и сделаем. Следом после запятой идет разряд десятых. Ноль, который стоит у делимого в этом разряде, припишем к полученному остатку ( 3 ):

Теперь деление можно продолжать как ни в чем не бывало. Надо только не забыть поставить в строке ответа запятую после целой части:

Теперь приписываем к остатку ( 2 ) ноль, который стоит у делимого в разряде сотых и доводим деление до конца:

В результате получаем, как и раньше,

Попробуем теперь точно таким же способом вычислить, чему равна дробь 27/11:

Мы получили в строке ответа число 2,45, а в строке остатка - число 5 . Но такой остаток нам уже раньше встречался. Поэтому мы уже сразу можем сказать, что, если мы продолжим наше деление «уголком», то следующей цифрой в строке ответа будет 4, затем пойдет цифра 5, потом - снова 4 и снова 5, и так далее, до бесконечности:

27 / 11 = 2,454545454545...

Мы получили так называемую периодическую десятичную дробь с периодом 45. Для таких дробей применяется более компактная запись, в которой период выписывается только один раз, но при этом он заключается в круглые скобки:

2,454545454545... = 2,(45).

Вообще говоря, если делить «уголком» одно натуральное число на другое, записывая ответ в виде десятичной дроби, то возможно только два исхода: (1) либо рано или поздно в строке остатка мы получим ноль, (2) либо там окажется такой остаток, который уже нам раньше встречался (набор возможных остатков ограничен, поскольку все они заведомо меньше делителя). В первом случае результатом деления является конечная десятичная дробь, во втором случае - периодическая.

Преобразование периодической десятичной дроби в обыкновенную

Пусть нам дана положительная периодическая десятичная дробь с нулевой целой частью, например:

a = 0,2(45).

Как преобразовать эту дробь обратно в обыкновенную?

Умножим ее на число 10 k , где k - это число цифр, стоящих между запятой и открывающей круглой скобкой, обозначающей начало периода. В данном случае k = 1 и 10 k = 10:

a ∙ 10 k = 2,(45).

Полученный результат умножим на 10 n , где n - «длина» периода, то есть число цифр, заключенных между круглыми скобками. В данном случае n = 2 и 10 n = 100:

a ∙ 10 k ∙ 10 n = 245,(45).

Теперь вычислим разность

a ∙ 10 k ∙ 10 n a ∙ 10 k = 245,(45) − 2,(45).

Поскольку дробные части у уменьшаемого и вычитаемого одинаковы, то у разности дробная часть равна нулю, и мы приходим к простому уравнению относительно a :

a ∙ 10 k ∙ (10 n 1) = 245 − 2.

Решается это уравнение с помощью следующих преобразований:

a ∙ 10 ∙ (100 − 1) = 245 − 2.

a ∙ 10 ∙ 99 = 245 − 2.

245 − 2

10 ∙ 99

Мы специально пока не доводим вычисления до конца, чтобы было наглядно видно, как можно сразу выписать этот результат, опуская промежуточные рассуждения. Уменьшаемое в числителе ( 245 ) - это дробная часть числа

a = 0,2(45)

если в ее записи стереть скобки. Вычитаемое в числителе ( 2 ) - это непериодическая часть числа а , располагающаяся между запятой и открывающей скобкой. Первый сомножитель в знаменателе ( 10 ) - это единица, к которой приписано столько нулей, сколько цифр в непериодической части (k ). Второй сомножитель в знаменателе ( 99 ) - это столько девяток, сколько цифр содержит период (n ).

Теперь наши вычисления можно довести до конца:

Здесь в числителе стоит период, а в знаменателе - столько девяток, сколько цифр в периоде. После сокращения на 9 полученная дробь оказывается равной

Подобным же образом,



effenergy.ru - Тренировки, питание, экипировка