Биомеханические характеристики при изучении движений человека. Введение в биомеханику физических упражнений

Начало развитию биомеханики физических упражнений положил Л. Ф. Лесгафт, разрабатывавший курс теории телесных движений. Он начал читать его в 1877 г. на курсах по физическому воспитанию. Этот курс продолжали читать и совершенствовать его ученики. В ин­ституте физического образования им. П. Ф. Лесгафта, созданном после Октябрьской революции, этот курс входил в предмет «Физическое образование», а в 1927 г. был выделен в самостоятельный - под назва­нием «Теория движений» и в 1931 г. переименован в курс «Биомеха­ника физических упражнений».

С 30-х гг. в институтах физической культуры в Москве (Н. А. Бернштейн), Ленинграде (Е. А. Котикова, Е. Г. Котельникова), Тбилиси (Л. В. Чхаидзе), Харькове (Д. Д. Донской) и др. развернулась науч­ная и учебная работа по биомеханике спорта. С 1958 г. биомеханика включена в учебный план всех институтов физической культуры Советского Союза, после чего начали создаваться кафедры биомеханики. На кафедрах спортивных дисциплин институтов физической культуры широко ведутся биомеханические исследования спортивной техники. Биомеханические методы успешно применяются научными работниками, тренерами для исследования качества техники и контроля над ее совершенствованием.

Преподавание биомеханики в высших физкультурных учебных заведениях и научные исследования осуществляются в ГДР, Польше, Югославии, Румынии, Чехословакии, Болгарии, Венгрии и других странах. В ряде зарубежных стран преподавание этой учебной дисцип­лины для специалистов физического воспитания ведется под названием «Кинезиология», «Анализ движений» и др. В составе научного коми­тета по физическому воспитанию и спорту при ЮНЕСКО создана рабо­чая группа по биомеханике. Проводятся международные совещания и симпозиумы по биомеханике.

Биомеханика физических упражнений способствует теоретическому обоснованию ряда вопросов физического воспитания. Биомеханика спорта составляет одну из основ теории спортивной техники. Она помогает обоснованию наиболее рациональной техники, путей овла­дения ею и технического совершенствования спортсменов.



Тема 3. ТОПОГРАФИЯ ТЕЛА ЧЕЛОВЕКА

1.Общие данные о теле человека 2.Оси и плоскости 3.Краткие данные о центре тяжести тела человека 4.Организм, орган, система органов, ткани 5.Клетки и ткани организма. Строение и функция тканей 6.Спинной мозг. Позвоночник 7.Механизм движений туловища и головы 8.Движения позвоночного столба и головы 9.Механизм движений верхней конечности 10.Некоторые данные о конституции человека 11.Нервная регуляция позы и движений 12.Функциональный анализ положения человека в позе стоя.

ОБЩИЕ ДАННЫЕ О ТЕЛЕ ЧЕЛОВЕКА

Тело человека представляет собой с точки зрения механики объект величайшей сложности. Оно состоит из частей, которые с большой степенью точности можно считать твердыми (скелет) и деформируемых полостей (мышцы, сосуды и пр.), причем в этих полостях содержатся текучие и фильтрующиеся среды, не обла­дающие свойствами обычных жидкостей.

Тело человека в общих чертах сохраняет строение, свойствен­ное всем позвоночным: двуполярность (головной и хвостовой кон­цы), двустороннюю симметрию , преобладание парных органов , наличие осевого скелета , сохранение некоторых (реликтовых) признаков сегментарности1 (метамерии) и т. п.

К другим морфофункциональным особенностям тела человека относятся: высокополифункциональная верхняя конечность; ров­ный ряд зубов; развитый головной мозг; прямохождение и др.

В анатомии принято изучать тело человека в вертикальном поло­жении с сомкнутыми нижними и опущенными верхними конечнос­тями.

При этом выделяют области головы, шеи, туловища и двух пар верхних и нижних конечностей.

На туловище человека обозначают два конца - черепной, или кра­ниальный и хвостовой, или каудальный и четыре поверхности - брюшную, или вентральную , спинную, или дорсальную и две боко­вых - правую и левую.

На конечностях определяют по отношению к туловищу два кон­ца : проксимальный , т. е. более близкий и дистальный , т. е. отда­ленный .

Оси и плоскости

Тело человека построено по типу двубоковой симметрии (оно делится срединной плоскостью на две симметричные половины) и характеризуется наличием внутреннего скелета. Внутри тела на­блюдается расчленение на метамеры , или сегменты, т. е. обра­зования однородные по строению и развитию, расположенные в последовательном порядке, в направлении продольной оси тела (например, мышечные, нервные сегменты, позвонки и пр.); цент­ральная нервная система лежит ближе к спинной поверхности туловища, пищеварительная - к брюшной. Как и все млекопитаю­щие, человек имеет молочные железы и покрытую волосами ко­жу, полость его тела разделена диафрагмой на грудной и брюшной отделы.

Чтобы лучше ориентироваться относительно взаимного поло­жения частей в человеческом теле, исходят из некоторых основ­ных плоскостей и направлений (рис. 2.5). Термины «верхний», «нижний», «передний», «задний» относятся к вертикальному поло­жению тела человека. Плоскость , делящая тело в вертикальном направлении на две симметричные половины, именуется сре­динной. Плоскости, параллельные срединной, называются са­гиттальными . (лат. sagitta - стрела); они делят тело на отрезки, расположенные в направлении справа налево. Перпендикулярно срединной плоскости идут фронтальные , т. е. параллельные лбу (фр. front - лоб) плоскости; они рассекают тело на отрезки, рас­положенные в направлении спереди назад. Перпендикулярно срединной и фронтальной плоскости проводятся горизонтальные , или поперечные плоскости, разделяющие тело на отрезки, распо­ложенные друг над другом. Сагиттальных (за исключением средин­ной), фронтальных и горизонтальных плоскостей можно провести произвольное количество, т. е. через любую точку поверхности те­ла или органа.

Терминами «медиально » и «латерально » пользуются для обозна­чения частей тела по отношению к срединной плоскости: medialis - находящийся ближе к срединной плоскости, lateralis - дальше от нее. С этими терминами не надо смешивать термины «внутренний » - internus и «наружный» - externus, которые употребляются только по отношению к стенкам полостей. Слова «брюшной» - ventralis, «спинной» - dorsalis, «правый» - dexter, «левый» - sinister, «по­верхностный» - superficialis, «глубокий» - profundus не нуждают­ся в объяснении. Для обозначения пространственных отношений на конечностях приняты термины «proximalis » и «distalis », т. е. на­ходящийся ближе и дальше от места соединения конечности с ту­ловищем.

Содержание книги основано на развитии идеи прикладного применения знаний по биомеханике и кинезиологии спорта в процессе профессионального познания телесно-двигательного упражнения как фундаментального средства совершенствования человека. Впервые упражнение рассматривается как элемент иерархии телесно-двигательных компонентов жизнедеятельности человека. В пособии показано развитие существующих представлений о биомеханике физических упражнений на основе системно-структурного и междисциплинарного подходов к познанию двигательной активности и принципов качественного биомеханического анализа двигательных действий. Дается представление о человеке как биомеханической системе с расширенной характеристикой элементов опорно-двигательного аппарата и основных их функций. Особое внимание уделяется понятийному аппарату сферы биомеханики и кинезиологии спорта как непременному условию создания представлений о семантических механизмах смыслового обеспечения двигательных действий и формирования профессионального языка общения. Книга адресована студентам учебных заведений, изучающих телесность человека и его двигательную активность, а также аспирантам, преподавателям, тренерам - всем, кто стремится познать биомеханические особенности движений на основе интеграции естественнонаучных и гуманитарных знаний.

Общая характеристика биомеханики.
Биомеханика представляет собой раздел естественных наук, в частности биофизики, изучающий на основе моделей и методов механики механические свойства живых тканей, отдельных органов и систем, а также происходящие в них механические явления. Современные биомеханические исследования охватывают различные уровни организации живой материи: биологические макромолекулы, клетки, ткани, органы, системы органов, а также целые организмы и их сообщества. Объект исследования этой науки - преимущественно движение человека и животных, а также механические явления в тканях, органах и системах. Под механическим движением понимается движение всей биосистемы в целом, а также изменение положения отдельных частей системы относительно друг друга, что в том и другом случае понимается как деформация системы. Все деформации в биосистемах связаны с биологическими процессами, которые играют главенствующую роль в движениях человека и животных, - это сокращения мышц, деформации сухожилий, костей, связок, фасций, движения в суставах. Поскольку движения человека очень сложны, то биомеханика изучает в тесной взаимосвязи их механическую и биологическую составляющие. Суть механической составляющей определяется тем, что движения, осуществляемые человеком, подчиняются законам механики, как и движения любого материального тела. Их основу составляют законы Ньютона, закон всемирного тяготения, законы волновых и колебательных движений и др.

Движения частей и звеньев тела человека относительно друг друга представляют собой перемещения в пространстве и во времени, которые выполняются, как правило, во многих суставах одновременно и последовательно. Движения в суставах но своей форме и характеру очень разнообразны. Они всегда зависят от действия множества приложенных сил. Все движения закономерно объединены в целостные организованные двигательные действия, которые человек осуществляет и управляет ими посредством сокращения мышц. Движения человека в пространстве и во времени есть одновременные, последовательные и управляемые изменения углов в суставных сочленениях посредством мышечных сокращений, которыми ведает головной мозг. Такие изменения определяет работа мышц, которая осуществляется за счет внутренней энергии организма, получаемой в результате биохимических реакций в нем. Именно моторная функция мышц как результат работы жизнеобеспечивающих систем организма лежит в основе биологической составляющей биомеханики человека.

Содержание
ПРЕДИСЛОВИЕ
Глава 1. ОБЩАЯ ХАРАКТЕРИСТИКА БИОМЕХАНИКИ
Глава 2. ТЕЛЕСНО-ДВИГАТЕЛЬНОЕ УПРАЖНЕНИЕ В ЖИЗНЕДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
Глава 3. ЧЕЛОВЕК КАК БИОМЕХАНИЧЕСКАЯ СИСТЕМА
3.1. Внешние формы тела человека
3.2. Пропорции, телосложение и конституция тела человека
3.3. Звенья и части тела как рычаги
3.4. Звенья и части тела как маятники
3.5. Биокинематическая пара и биокинематическая цепь
3.6. Оси и плоскости тела человека
3.7. Общин центр масс, общий центр тяжести, геометрия масс, антропометрия
3.8. Равновесие, устойчивость, балансирование биомеханической системы
3.9. Опорный аппарат как элемент биомеханической системы
3.10. Мышечный аппарат человека и его функциональные особенности
3.10.1. Общие представления о мышцах
3.10.2. Механизм и закономерности напряжения скелетных мышц
3.10.3. Биомеханические свойства мышц
3.11. Мышцы человека в основных движениях
3.12. Специфические функции элементов опорно-двигательного аппарата спортсмена
3.13. Энергетическое обеспечение работы биомеханической системы
3.14. Деформация тела спортсмена как биомеханической системы, его моторика и моторность
3.15. Афферентация как совокупность рецепций в биомеханической системе
Глава 4. СИСТЕМНОЕ ПРЕДСТАВЛЕНИЕ О ТЕЛЕСНО-ДВИГАТЕЛЬНОМ УПРАЖНЕНИИ И ЕГО ПОЗНАНИЕ
4.1. Общее представление о системно-структурном подходе к познанию упражнения
4.2. Биомеханические способы познания телеснодвигательных упражнений
4.2.1. Виды биомеханического обследования
4.2.2. Инструментальные методы исследования
4.2.3. Аналитический способ получения биомеханических характеристик движений
4.3. Биомеханические характеристики движений
4 3.1. Кинематические характеристики
4.3.2. Динамические характеристики
4.4. Компоненты системы двигательных действий и ее структуры
4.4.1. Пространственные и временные компоненты
4.4.2. Виды структур
4.5. Общие представления об управлении движениями при выполнении упражнения
4.6. Уровни построения движений
4.7. Выполнение телесно-двигательного упражнения как решение двигательной задачи
Глава 5. БИОМЕХАНИЧЕСКИЙ АНАЛИЗ ТЕХНИКИ ТЕЛЕСНО-ДВИГАТЕЛЬНОГО УПРАЖНЕНИЯ
5.1. Разновидности биомеханического анализа
5.2. Понятие техники телесно-двигательного упражнения
5.3. Действия как системные компоненты техники телесно-двигательного упражнения
5.3.1. Подготовительные, основные и завершающие двигательные действия
5.3.2. Управляющие двигательные действия
5.3 3. Энергообразующие и формообразующие действия
5.4. Фаза и фазовый состав упражнения
5.5. Тип и форма осанки в упражнении
5.6. Мышечное обеспечение двигательных действий
Глава 6. БИОМЕХАНИЧЕСКИЕ ОСОБЕННОСТИ УПРАЖНЕНИЙ В ИЗБРАННЫХ ВИДАХ ДВИГАТЕЛЬНОЙ АКТИВНОСТИ
6.1. Упражнения гимнастики
6.2. Упражнения легкой атлетики
6.3. Упражнения плавания
Глава 7. НАПРАВЛЕННОСТЬ ВОЗДЕЙСТВИЯ И ПРИКЛАДНОСТЬ ТЕЛЕСНО-ДВИГАТЕЛЬНОГО УПРАЖНЕНИЯ
7.1. Общие особенности воздействия телесно-двигательных упражнений на организм человека
7.2. Основные закономерности развития физических способностей
7.3. Воздействие упражнения на системы жизнеобеспечения организма
7.4. Прикладность упражнения и ее определение
Глава 8. АЛГОРИТМ ПОЗНАНИЯ ТЕЛЕСНО-ДВИГАТЕЛЬНОГО УПРАЖНЕНИЯ
8.1. План-содержание
8.2. Рекомендации по реализации алгоритма познания упражнения
Глава 9. ПРИМЕРЫ БИОМЕХАНИЧЕСКОГО ПЕДАГОГИЧЕСКОГО АНАЛИЗА ТЕЛЕСНО-ДВИГАТЕЛЬНОГО УПРАЖНЕНИЯ
Глава 10. ТЕХНОЛОГИЯ ОБУЧЕНИЯ УПРАЖНЕНИЮ НА ОСНОВЕ ЕГО КАЧЕСТВЕННЫХ БИОМЕХАНИЧЕСКИХ ОСОБЕННОСТЕЙ
10.1. Цели и подцели обучения
10.2. Задачи обучения и решение задач двигательных действий
10.3. Программа учебных заданий
10.4. Методы обучения
10.5. Механическая демонстрационная модель спортсмена
10.6. Методические приемы обучения упражнению
10.7. Возможные двигательные ошибки в процессе овладения телесно-двигательным упражнением
10.8. Организационная форма процесса обучения
Глава 11. БИОМЕХАНИКА ФИЗИЧЕСКИХ УПРАЖНЕНИЙ В РАЗВИТИИ
ЗАКЛЮЧЕНИЕ
УКАЗАТЕЛЬ ПОНЯТИЙ
ЛИТЕРАТУРА.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Биомеханика, Познание телесно-двигательного упражнения, Курысь В.Н., 2013 - fileskachat.com, быстрое и бесплатное скачивание.

1. Предмет биомеханики

Движение лежит в основе жизнедеятельности человека. Разнообразные химические и физические процессы в клетках тела, работа сердца и течение крови, дыхание, пищеварение и выделение; перемещение тела в пространстве и частей тела относительно друг друга; сложнейшая нервная деятельность, являющаяся физиологическим механизмом психики, восприятие и анализ внешнего и внутреннего мира – все это различные формы движения материи. Закономерности механического движения изучаются механикой. Предметом механики как науки является изучение изменений пространственного расположения тел и тех причин, или сил, которые вызывают эти изменения. Биомеханика – наука о законах механического движения в живых системах. Она изучает движения с точки зрения законов механики, свойственных всем без исключения механическим движениям материальных тел. Объект познания биомеханики – двигательные действия человека как системы взаимно связанных активных движений и положений его тела. Область изучения биомеханики – механические и биологические причины возникновения движений, особенности их выполнения в различных условиях. Общая задача изучения движений состоит в оценке эффективности приложения сил для достижения поставленной цели.

2. Задачи биомеханики спорта

Общая задача изучения движений человека в биомеханике спорта – оценка эффективности приложения сил для более совершенного достижения поставленной цели.

Изучение движений в биомеханике спорта в конечном счете направлено на то, чтобы найти совершенные способы двигательных действий и научить лучше их исполнять. Поэтому оно имеет ярко выраженную педагогическую направленность.

Частные задачи биомеханики спорта состоят в изучении следующих основных вопросов:

а) строение, свойства и двигательные функции тела спортсмена;

б) рациональная спортивная техника и

в) техническое совершенствование спортсмена.

Поскольку особенности движений зависят от объекта движений – тела человека, в биомеханике спорта изучают (с точки зрения биомеханики) строение опорно-двигательного аппарата, его механические свойства и функции (включая показатели двигательных качеств) с учетом возрастных и половых особенностей, влияния уровня тренированности и т.п. Короче говоря, первая группа задач – изучение самих спортсменов, их особенностей и возможностей.

Чтобы эффективно выступать на соревнованиях, спортсмен должен владеть наиболее рациональной для него техникой. От того, из каких движений и как построены двигательные действия, зависит их совершенство. Поэтому в биомеханике спорта детально исследуют особенности различных групп движений и возможности их совершенствования. Изучают ныне существующую спортивную технику, а также разрабатывают новую, более рациональную.

Данные об изменениях спортивной техники в процессе тренировки позволяют разрабатывать основу методики технического совершенствования спортсмена. Исходя из особенностей рациональной техники, определяют рациональные пути ее построения, средства и методы повышения спортивно-технического мастерства.

Таким образом, биомеханическое обоснование технической подготовки спортсменов подразумевает: определение особенностей и уровня подготовленности тренирующихся, планирование рациональной спортивной техники, подбор вспомогательных упражнений и «создание тренажеров для специальной физической и технической подготовки, оценку применяемых методов тренировки и контроль за их эффективностью.

3. Временные характеристики

Временные характеристики раскрывают движение во времени: когда оно началось и закончилось (момент времени), как долго длилось (длительность движения), как часто выполнялось движение (темп), как они были построены во времени (ритм). Вместе с пространственно-временными характеристиками они определяют характер движений человека.

Момент времени – это временная мера положения точки тела и системы. Момент времени (t) определяют промежутком времени до него от начала отсчета: [t] = Т.

Момент времени определяют не только для начала и окончания движения, но и для других важных мгновенных положений. В первую очередь это моменты существенного изменения движения: заканчивается одна часть (фаза) движения и начинается следующая (например, отрыв стопы от опоры в беге – это момент окончания фазы отталкивания и начала фазы полета). По моментам времени определяют длительность движения.

Длительность движения – это его временная мера, которая измеряется разностью моментов времени окончания и начала движения.

Темп движений – это временная мера их повторности. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений):

Темп – величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот. В повторяющихся (циклических) движениях темп может служить показателем совершенства техники.

Ритм движений (временной) – это временная мера соотношения частей движений. Он определяется по соотношению длительности частей движения:

Ритм движений характеризует, например, отношение времени опоры к времени полета в беге или времени амортизации (сгибания колена) к времени отталкивания (выпрямления ноги) при опоре.

4. Пространственно-временные характеристики движения

По пространственно-временным характеристикам определяют, как изменяются положения и движения человека во времени, как быстро человек изменяет свои положения (скорость) и движения (ускорение).

Скорость точки – это пространственно-временная мера движения точки (быстроты изменения ее положения). Скорость равна первой производной по времени от расстояния в рассматриваемой системе отсчета:

Скорость точки определяется по изменению ее координат во времени. Скорость – величина векторная, она характеризует быстроту движения и его направление. Так как скорость движений человека чаще всего не постоянная, а переменная (движение неравномерное и криволинейное), для разбора упражнений определяют мгновенные скорости.

Ускорение точки – это пространственно-временная мера изменения движения точки (быстрота изменения движения – по величине и направлению скорости). Ускорение точки равно первой производной по времени от скорости этой точки в рассматриваемой системе отсчета:

Ускорение точки определяется по изменению ее скорости во времени. Ускорение – величина векторная, характеризующая быстроту изменения скорости по ее величине и направлению в данный момент.

5. Инерционные характеристики

Свойство инертности тел раскрывается в первом законе Ньютона:

«Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы, не изменят это состояние».

Иначе говоря, всякое тело сохраняет скорость, пока ее не изменяв силы.

Понятие об инертности:

Любые тела сохраняют скорость неизменной при отсутствии внешних воздействий одинаково. Это свойство, не имеющее меры, и предлагается называть инерцией 1. Разные тела изменяют скорость под действием сил по-разному. Это их свойство, следовательно, имеет меру: его называют инертностью. Именно инертность и представляет интерес, когда надо оценить, как изменяется скорость.

Инертность – свойство физических тел, проявляющееся в постепенном изменении скорости с течением времени под действием сил.

Сохранение скорости неизменной (движение как бы по инерции) в реальных условиях возможно только тогда, когда все внешние силы, приложенные к телу, взаимно уравновешены. В остальных случаях неуравновешенные внешние силы изменяют скорость тела в соответствии с мерой его инертности. Момент инерции тела – это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс всех материальных точек тела на квадраты их расстояний от данной оси

Радиус инерции тела – это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квадратным из отношения момента инерции (относительно данной оси) к массе тела:

6. Звенья тела как рычаги и маятники

Точки соединения, которые можно рассматривать либо как точки опоры (для рычага), либо как точки отвеса (для маятника).

Рычаг характеризуется расстоянием между точкой приложения силы и точкой вращения. Рычаги бывают первого и второго рода.

Рычаг первого рода или рычаг равновесия состоит только из одного звена. Пример – крепление черепа к позвоночнику.

Рычаг второго рода характеризуется наличием двух звеньев. Условно можно выделить рычаг скорости и рычаг силы в зависимости от того, что преобладает в их действиях. Рычаг скорости дает выигрыш в скорости при совершенствовании работы. Пример – локтевой сустав с грузом на ладони. Рычаг силы дает выигрыш в силе. Пример – стопа на пальцах.

Поскольку тело человека выполняет свои движения в трехмерном пространстве, то его звенья характеризуются степенями свободы, т.е. возможностью совершать поступательные и вращательные движения во всех измерениях. Если звено закреплено в одной точке, то оно способно совершать вращательные движения и мы можем сказать, что оно имеет три степени свободы.

Закрепление звена приводит к образованию связи, т.е. связанному движению закрепленного звена с точкой закрепления. Поскольку руки и ноги человека могут совершать колебательные движения, то к механике их движения применимы те же формулы, что и для простых механических маятников. Основные вывод их них – собственная частота колебаний не зависит от массы качающегося тела, но зависит от его длины (при увеличении длины частота колебаний уменьшается).

Делая частоту шагов при ходьбе или беге или гребков при плавании или гребле резонансной (т.е. близкой к собственной частоте колебаний руки или ноги), удается минимизировать затраты энергии. При наиболее экономичном сочетании частоты и длины шагов или гребков человек демонстрирует существенный рост работоспособности. Простой пример: при беге высокий спортсмен имеет большую длину шага и меньшую частоту шагов, чем более низкорослый спортсмен, при равной с ним скорости передвижения.

7. Механические свойства мышц

Двигательная деятельность человека происходит при помощи мышечной ткани, обладающей сократительными структурами. Работа мышц осуществляется благодаря сокращению (укорачиванию с утолщением) миофибрилл, которые находятся в мышечных клетках. Работа мышц осуществляется посредством их присоединения к скелету при помощи сухожилий.

К биомеханическим свойствам мышц относят сократимость, упругость, жесткость, прочность и релаксацию.

Сократимость – это способность мышцы сокращаться при возбуждении. В результате сокращения происходит укорочение мышцы и возникает сила тяги.

Упругость мышцы состоит в ее способности восстанавливать первоначальную длину после устранения деформирующей силы. Существование упругих свойств объясняется тем, что при растяжении в мышце возникает энергия упругой деформации. При этом мышцу можно сравнить с пружиной: чем сильнее растянута пружина, тем большая энергия в ней запасена. Это явление широко используется в спорте. Например, в хлесте предварительно растягиваются и параллельный, и последовательный упругий компонент мышц, чем накапливается энергия. Запасенная таким образом энергия в финальной части движения (толкания, метания и т.д.) преобразуется в энергию движения (кинетическую энергию).

Аналогия мышцы с пружиной позволяет применить к ее работе закон Гука, согласно которому удлинение пружины нелинейно зависит от величины растягивающей силы. Кривую поведения мышцы в этом случае называют «сила-длина». Зависимость между силой и скоростью мышечного сокращения («сила-скорость») называют кривой Хилла.

Жесткость – это способность противодействовать прикладываемым силам. Коэффициент жесткости определяется как отношение приращения восстанавливающей силы к приращению длины мышцы под действием внешней силы: Кж=DF/Dl (Н/м).

Величина, обратная жесткости, называется податливостью мышцы. Коэффициент податливости: Кп=Dl /DF (м/Н) – показывает, насколько удлинится мышца при изменении внешней силы. Например, податливость сгибателя предплечья близка к 1 мм/Н.

Прочность мышцы оценивается величиной растягивающей силы, при которой происходит разрыв мышцы. Сила, при которой происходит разрыв мышцы составляет от 0.1 до 0.3 Н/мм2. Предел прочности сухожилий на два порядка величины больше и составляет 50 Н/мм2. Однако, при очень быстрых движениях возможен разрыв более прочного сухожилия, а мышца остается целой, успев самортизировать.

Релаксация – свойство мышца, проявляющееся в постепенном уменьшении силы тяги при постоянной длине мышцы. Релаксация проявляется, например, при прыжке вверх, если во время глубокого приседа спортсмен делает паузу. Чем пауза длительнее, тем сила отталкивания и высота выпрыгивания меньше.

Существует два вида группового взаимодействия мышц: синергизм и антагонизм.

Мышцы-синергисты перемещают звенья тела в одном направлении. Например, при сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плече-лучевая мышцы и т.д. Результатом синергического взаимодействия мышц служит увеличение результирующей силы действия. При наличии травмы, а также при локальном утомлении какой-либо мышцы ее синергисты обеспечивают выполнение двигательного действия.

Мышцы-антагонисты имеют, наоборот, разнонаправленное действие. Так, если одна из них выполняет преодолевающую работу, то другая – уступающую.

Механические свойства костей определяются их разнообразными функциями; кроме двигательной, они выполняют защитную и опорную функции. Так кости черепа и грудной клетки защищают внутренние органы, а кости позвоночника и конечностей выполняют опорную функцию.

Выделяют 4 вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение. Установлено, что прочность кости на растяжение почти равна прочности чугуна. При сжатии прочность костей еще выше. Самая массивная кость – большеберцовая (основная кость бедра) выдерживает силу сжатия в 16–18 кН.

Менее прочны кости на изгиб и кручение. Однако регулярные тренировки приводят к гипертрофии костей. Так, у штангистов утолщаются кости ног и позвоночника, у теннисистов – кости предплечья и т.п.

Механические свойства суставов зависят от их строения. Суставная поверхность смачивается синовиальной жидкостью, которую хранит суставная сумка. Синовиальная жидкость обеспечивает уменьшение трения в суставе примерно в 20 раз. При этом при снижении нагрузки на сустав жидкость поглощается губчатыми образованиями сустава, а при увеличении нагрузки она выжимается для смачивания поверхности сустава и уменьшения коэффициента трения.

8. Геометрия масс тела

Геометрия масс тела (распределение масс тела) характеризуется такими показателями, как вес (масса) отдельных звеньев тела, положение центров масс отдельных звеньев и всего тела, моменты инерции и др.

Общий центр масс тела человека – Вес отдельных звеньев тела зависит от веса тела в целом. Приближенные величины относительного веса звеньев тела. относительный вес отдельных звеньев тела не постоянен. Например, если человек, весивший 60 кг, затем, поправившись, стал весить 90 кг, то это не означает, что все звенья его тела, в частности стопы, кисти, голова, стали тоже в 1,5 раза тяжелее. Более точно можно определить вес отдельных звеньев тела, использовав уравнения регрессии, приведенные в табл. 2

Центр масс твердого тела является вполне определенной фиксированной точкой, не изменяющей своего положения относительно тела. Центр масс системы тел может менять свое положение, если изменяются расстояния между точками этой системы.

В биомеханике различают центры масс отдельных звеньев тела (например, голени или предплечья) и центр масс всего тела.

У человека, стоящего в основной стойке, горизонтальная плоскость, проходящая через ОЦМ, находится примерно на уровне второго крестцового позвонка. В положении лежа ОЦМ смещается в Сторону головы примерно на 1%; у женщин он расположен в среднем на 1–2% ниже, чем у мужчин; у детей-дошкольников он существенно выше, чем у взрослых (например, у годовалых детей в среднем на 15%).

При изменении позы ОЦМ тела, естественно, смещается и в некоторых случаях, в частности при наклонах вперед и назад, может находиться вне тела человека.

Чтобы определить положение ОЦМ тела, используют либо экспериментальные, либо расчетные методы.

9. Составные движения в биокинематичеких цепях

Составное движение образуется из нескольких составляющих движений звеньев в сочленениях биокинематической цепи.

В простейших случаях в механике складываются два поступательных движения двух тел.

Когда в составном движений принимают участие два тела, то обычно составляющие движения называют переносными и относительными. Платформа как бы переносит на себе движение по ней груза; движение платформы переносное. Движение же груза по платформе относительно системы отсчета, связанной с самой платформой, относительное. Тогда движение груза в неподвижной системе отсчета (Земля) результирующее: это результат двух составляющих движений.

В теле человека таких движений не бывает, так как почти во всех суставах звенья движутся вокруг осей сочленений. В биокинематических цепях обычно движется много звеньев; одни «несут» на себе движения других (несущие и несомые движения). Несущее движение (например, мах бедром при выносе ноги в беге) изменяет несомое (сгибание голени).

При движениях в незамкнутой кинематической цепи угловые перемещения, скорости и ускорения, если они направлены в одну сторону, складываются. Разнонаправленные движения не складываются, а вычитаются (суммируются алгебраически).

Сложнее составные движения, в которых составляющие движения вращательные (по дуге окружности) и поступательные (вдоль радиуса)

В составном движении, образованном из вращательных составляющих движений (в биокинематической цепи), вследствие суммирования равнонаправленных и вычитания разнонаправленных движений в разных суставах всегда происходит прибавление движения и вдоль радиуса (поступательное). Значит, биокинематическая цепь (по прямой линии – от ее начала до конца) укорачивается или удлиняется (например, при махе рукой, ногой в прыжках).

10. Биомеханическая характеристика силовых качеств

В биомеханике силой действия человека называется сила воздействия его на внешнее физическое окружение, передаваемая через рабочие точки своего тела. Примером могут быть сила давления на опору, сила тяги за рукоятку станового динамометра и т.п.

Момент силы – это мера вращающего действия силы на тело

Сила действия человека (СДЧ), как и всякая другая сила, может быть представлена в виде вектора и определена указанием: 1) направления, 2) величины (скалярной) и 3) точки приложения.

Сила действия человека зависит от состояния данного человека и его волевых усилий, т.е. стремления проявить ту или иную величину силы, в частности максимальную силу, а также от внешних условий, в частности от параметров двигательных заданий.

Понятие о силовых качествах

Силовые качества характеризуются максимальными величинами силы действия (F mm), которую может проявить тот или иной человек. Вместо термина «силовые качества» используют также термины «мышечная сила», «силовые возможности», «силовые способности». Наиболее распространенной является следующая классификация силовых качеств:

Силовые качества Условия проявления

1. Собственно-силовые Статический режим и медленные (статическая сила) движения

2. Скоростно-силовые:

а) динамическая сила Быстрые движения

б) амортизационная сила Уступающие движения

Сила действия человека и сила мышц

Сила действия человека непосредственно зависит от сил тяги мышц, т.е. сил, с которыми отдельные мышцы тянут за костные рычаги. Однако между натяжением той или иной мышцы и силой действия нет однозначного соответствия. Это объясняется, во-первых, тем, что почти любое движение происходит в результате сокращения большого числа мышечных групп; сила действия – итог их совместной активности; и, во-вторых, тем, что при изменении суставных углов меняются условия тяги мышц за кость, в частности плечи сил мышечной тяги

11. Биомеханическая характеристика скоростных качеств

Скоростные качества характеризуются способностью человека совершать двигательные действия в минимальный для данных условий отрезок времени. При этом предполагается, что выполнение задания длится небольшое время и утомление не возникает.

Принято выделять три основные (элементарные) разновидности проявления скоростных качеств:

1) скорость одиночного движения (при малом внешнем сопротивлении);

2) частоту движений;

3) латентное время реакции.

Между показателями скорости одиночного движения, частоты движений и латентного времени реакции у разных людей корреляция очень мала. Например, можно отличаться очень быстрой реакцией и быть относительно медленным в движениях и наоборот. Имея это в виду, говорят, что элементарные разновидности скоростных качеств относительно независимы друг от друга.

В практике приходится обычно встречаться с комплексным проявлением скоростных качеств. Так, в спринтерском беге результат зависит от времени реакции на старте, скорости отдельных движений (отталкивания, сведения бедер в безопорной фазе) и частоты шагов. Скорость, достигаемая в целостном сложнокоординированном движении, зависит не только от скоростных качеств спортсмена, но и от других причин (например, скорость бега – от длины шагов, а та, в свою очередь, от длины ног, силы и техники отталкивания), поэтому она лишь косвенно характеризует скоростные качества, и при детальном анализе именно элементарные формы проявления скоростных качеств оказываются наиболее показательными.

12. Биомеханическая характеристика выносливости

Выносливостью называется способность противостоять утомлению. При прочих равных условиях у более выносливых людей наступает позже как первая, так и вторая фаза утомления. Основным мерилом выносливости считают время, в течение которого человек способен поддерживать заданную интенсивность двигательного задания. Согласно правилу обратимости двигательных заданий, для измерения выносливости можно использовать и другие эргометрические показатели. Рассмотрим пример: спортсмены лежа выжимают «до отказа» штангу 50 кг. Если не учитывать уровень их максимальной (F mm) силы, то более выносливыми следует считать тех, кто смог поднять штангу большее число раз. Если же учесть, что максимальная сила у одних спортсменов невелика (скажем, 55 кг), а у других намного больше, то ясно, что на полученный результат повлияет не только разный уровень выносливости испытуемых, но и разные силовые возможности. Устранить их влияние можно было бы, например, так: предложить всем выжимать штангу, вес которой равен определенному проценту от их максимальной силы (скажем, 50% от F mm). В первом случае интенсивность задания уравнивалась в абсолютных единицах (килограммах), во втором – в относительных (в% от R m).

Примерами латентных показателей выносливости могут быть:

1. Коэффициент выносливости – отношение времени преодоления всей дистанции ко времени преодоления какого-либо короткого отрезка (100 м в беге, 50 м в плавании и т.п.): KB = t д, где t эт – время на дистанции (например, 400 м за 48,0 с), t 3 T – лучшее время на коротком («эталонной») отрезке (100 м – 11,0 с). KB = 48,0:11,0 = 4,3636.

2. Запас скорости (по Н.Г. Озолину) – разность между средним временем преодоления эталонного отрезка при прохождении всей дистанции и лучшим временем на этом отрезке. Запас скорости (3 C)= t д: n – t 3 r, где и – число, показывающее, во сколько раз эталонный отрезок меньше всей дистанции (400 м: 100 м = 4). Запас скорости =48,0:4–11,0 = 1 с.

Чем меньше запас скорости, тем выше выносливость. С ростом спортивной квалификации запас скорости, как правило, уменьшается. Например, у сильнейших бегунов мира на 400 м он равен 0,9–1,0 с, у начинающих – 2–2,5 с. С увеличением дистанции запас скорости также увеличивается.

Тренеры в видах спорта циклического характера должны знать, чему равны показатели запаса скорости (или другие латентные показатели выносливости) на разных дистанциях у спортсменов разной квалификации, это поможет определять слабые стороны в подготовке своих учеников, видеть, что именно отстает – скорость или выносливость.

13. Биомеханическая характеристика гибкости

Гибкостью называется способность выполнять движения с большой амплитудой. Слово «гибкость» используется обычно как более общий термин. Применительно к отдельным суставам говорят о подвижности в них. Для точного измерения гибкости (подвижности в суставах) надо измерить угол в соответствующем сочленении в крайнем возможном положении между сочленяющимися звеньями. Измерение углов движений в суставах, как известно, называется гониометрией (от греч. «гони» – угол и «метр» – мера). Поэтому говорят, что для измерения гибкости используются гиниометрические показатели. Наиболее детальный способ измерения гибкости – так называемый глобографический. При этом поверхность, очерчиваемая в пространстве дистальной точкой движущейся кости, рассматривается как «глобус», на котором определяют предельные значения «меридианов» и «параллелей». В спортивной практике для измерения гибкости нередко используют не угловые, а линейные меры (рис. 60, В). В этом случае на результате измерения могут сказаться размеры тела, например длина рук (при наклоне вперед или выполнении выкрута с палкой), длина туловища (при измерении расстояния между руками и ногами во время выполнения гимнастического моста). Поэтому линейные меры менее точны, и, применяя их, следует вводить поправки, устраняющие нежелательное влияние размеров тела.

Выделяют активную и пассивную гибкость. Активная гибкость – способность выполнять движения в каком-либо суставе с большой амплитудой за счет активности мышечных групп, проходящих через этот сустав (пример: амплитуда подъема ноги в равновесии «ласточка»). Пассивная гибкость определяется наивысшей амплитудой, которую можно достичь за счет внешних сил. Показатели пассивной гибкости больше соответствующих показателей активной гибкости. Разница между ними называется дефицитом активной гибкости. Он определяется зависимостью «длина – сила тяги» активной мышцы, в частности величиной сипы тяги, которую может проявить мышца при своем наибольшем укорочении. Если эта сила недостаточна для дальнейшего перемещения сочленяющихся звеньев тела, то говорят об активной недостаточности мышцы. Экспериментально показано, что активная недостаточность может быть уменьшена (соответственно уменьшен дефицит активной гибкости и повышена сама активная гибкость) за счет силовых упражнений, выполняемых с большой амплитудой движения. Рост силовых качеств приводит в этом случае к увеличению показателей активной гибкости.

Гибкость зависит от ряда условий: температуры окружающей среды (повышение температуры приводит к повышению гибкости), времени суток (в середине дня она выше), разминки и др.

В спорте не следует добиваться предельного развития гибкости. Ее надо развивать лишь до такой степени, которая обеспечивает беспрепятственное выполнение необходимых движений. При этом величина гибкости должна несколько превосходить ту максимальную амплитуду, с которой выполняется движение («запас гибкости»).

14. Связь биомеханики с другими науками

Биомеханика как одна из биологических наук нового типа начинает сближаться по методам исследования с точными науками. Общая биомеханика как раздел биофизики, включающая изучение внутриорганизменных биосистем, возникла на стыке физико-математических и биологических областей знания. Успехи этих наук, использование идей и подходов кибернетики, а также научно-технический прогресс так или иначе сказываются на развитии биомеханики. В свою очередь, эти науки обогащаются данными биомеханики о физике живого. В биомеханических исследованиях применяются методы этих смежных наук; в то же время в исследованиях их проблем могут применяться биомеханические методы. Здесь налицо двусторонняя связь, обеспечивающая взаимное обогащение теории и методов исследования.

Несколько иначе связана биомеханика с отраслями знания, в которых изучаются конкретные области прикладной двигательной деятельности. Так, развивающаяся инженерная биомеханика смыкается с бионикой, инженерной психологией («человек и машина»), связана с разработкой роботов, манипуляторов и других технических устройств, умножающих возможности человека в труде. Медицинская биомеханика дает обоснование ряду методов протезирования, протезостроения, травматологии, ортопедии, лечебной физической культуры. В космической медицине решаются задачи подготовки космонавтов, обеспечения их работоспособности в условиях невесомости, а также двигательных действий в космосе. Биомеханика как бы обслуживает эти области деятельности в процессе решения их прикладных задач.

Методы и законы биомеханики спорта используются также для совершенствования теории и методики физического воспитания, врачебного контроля, спортивно-педагогических и других дисциплин, решающих свои конкретные задачи в области физического воспитания.

15. Сила и момент силы

Сила – это мера механического действия одного тела на другое Численно она определяется произведением массы тела на его ускорение, вызванное данной силой:

Измерение силы, так же как и массы, основано на втором закон! Ньютона. Сила, приложенная к данному телу, вызывает его ускорение Источником силы служит другое тело; следовательно, взаимодействуют два тела. Таким образом, имеется «действие» второго тела на первое и «противодействие» первого тела, приложенное ко второму; Поскольку действие и противодействие приложены к разным телам их нельзя складывать, заменять равнодействующей.

Момент силы – это мера вращающего действия силы на тело; он определяется произведением модуля силы на ее плечо. Момент силы считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте тела по часовой стрелке (со стороны наблюдателя).

Момент силы – величина векторная: сила проявляет свое вращающее действие, когда она приложена на ее плече (рис. 8, а). Иначе! говоря, линия действия силы не должна проходить через ось вращения. Если сила лежит не в плоскости, перпендикулярной к оси, находят составляющую силы, лежащую в этой плоскости (рис. 8, б); она и вызывает момент силы относительно оси. Остальные составляющие на него не влияют. Понятно, что сила, совпадающая с осью или параллельная ей, также не имеет плеча относительно оси, а следовательно, нет и ее момента.

16. Импульс силы

Импульс силы – это мера воздействия силы на тело за данный промежуток времени (в поступательном движении). За конечный промежуток времени он равен определенному интегралу от элементарного импульса силы, где пределами интегрирования являются моменты начала и конца промежутка времени действия силы:

В случае одновременного действия нескольких сил сумма их импульсов равна импульсу их равнодействующей за то же время. Любая сила, приложенная даже в доли секунды (например, при отталкивании коньком от льда), имеет импульс (рис. 9).

Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы., Импульс момента силы – это мера воздействия момента силы относительно данной оси за данный промежуток времени (во вра­щательном движении).

17. Соединение звеньев тела

Соединенные два соседних звена тела образуют пару, а пары, в свою очередь, соединены в цепи.

Биокинематическая пара – это подвижное (кинематическое) соединение двух костных звеньев, в котором возможности движений определяются его строением и управляющим воздействием мышц. В технических механизмах соединения двух звеньев – кинематические пары – устроены обычно так, что возможны лишь вполне определенные, заранее заданные движения. Одни возможности не ограничены (их характеризуют степени свободы движения), другие полностью ограничены (их характеризуют степени связи).

Различают связи: а) геометрические (постоянные препятствия перемещению в каком-либо направлении, например костное ограничение в суставе) и б) кинематические (ограничение скорости, например мышцей-антагонистом).

В биокинематичеких парах имеются постоянные степени связи, которые определяют собой сколько как максимум и каких остается степеней свободы движения. Почти все биокинематические пары в основном вращательные (шарнирные); немногие допускают чисто поступательное скольжение звеньев относительно друг друга и лишь одна пара (голеностопный сустав) – винтовое движение.

Биокинематическая цепь – это последовательное либо незамкнутое (разветвленное), либо замкнутое соединение ряда биокинематических пар (рис. 10, а).

В незамкнутых цепях имеется свободное (конечное) звено, входящее лишь в одну пару. В замкнутых цепях нет свободного конечного звена, каждое звено входит в две пары.

В незамкнутой цепи, следовательно, возможны изолированные движения в каждом отдельно взятом суставе. В двигательных действиях движения в незамкнутых цепях происходят обычно одновременно во многих суставах, но возможность изолированного движения не исключена.

В замкнутой цепи изолированные движения в одном суставе невозможны: в движение неизбежно одновременно вовлекаются и другие соединения (рис. 10, б).

Значительная часть незамкнутых биокинематических цепей оснащена многосуставными мышцами. Поэтому движения в одних суставах через такие мышцы бывают связаны с движениями в соседних суставах. Однако при точном управлении движениями во многих случаях эту взаимную связь можно преодолеть, «выключить». В замкнутых же цепях связь непреодолима и действия мышц обязательно передаются на отдаленные суставы.

Незамкнутая цепь может стать замкнутой, если конечное свободное звено получит связь (опора, захват) с другим звеном цепи (непосредственно или через какое-либо тело).

18. Степени свободы в биомеханических цепях

Если у физического тела нет никаких ограничений (связей), оно может двигаться в пространстве во всех трех измерениях, т.е. г относительно трех взаимно перпендикулярных осей (поступательно), а также вокруг них (вращательно). Следовательно, у такого тела шесть степеней свободы движения.

Каждая связь уменьшает число степеней свободы. Зафиксировав одну точку свободного тела, сделав его звеном пары, фазу лишают его трех степеней свободы – возможных линейных перемещений вдоль трех основных осей координат. Примером может служить шаровидный сустав – тазобедренный, в котором три степени свободы из шести (возможно вращение относительно трех осей). Закрепление двух точек звена говорит о наличии оси, проходящей через эти точки. В таком случае остается одна степень свободы. Пример подобного ограничения – одноосный сустав, например межфаланговый. Закрепление третьей точки, не лежащей на этой оси, полностью лишает звено свободы движений. Такое соединение к суставам не относится. В анатомии выделяют также двуосные суставы; они имеют вторую степень свободы вследствие неконгруэнтности (неполного соответствия по форме) суставных поверхностей (суставы лучезапястный и пястнофаланговый 1-го пальца).

Почти во всех суставах (кроме межфаланговых, лучелоктевых и атлантоосевого) степеней свободы больше, чем одна. Поэтому устройство пассивного аппарата в них обусловливает неопределенность движений, множество возможностей движений («неполносвязный механизм»). Управляющие воздействия мышц вызывают дополнительные связи и оставляют для движения только одну степень свободы («полносвязный механизм»). Так обеспечивается одна-единственная возможность движений – именно та, которая требуется.

19. Строение тела и моторика человека

Как двигательные возможности людей, так и многие индивидуальные черты спортивной техники в значительной степени зависят от особенностей телосложения. К ним в первую очередь относят:

а) тотальные размеры тела – основные размеры, характеризующие его величину (длина тела, вес, окружность грудной клетки, поверхность тела и т.п.);

б) пропорции тела – соотношение размеров отдельных частей тела (конечностей, туловища и др.);

в) конституциональные особенности.

Тотальные размеры тела у людей существенно различны. В одном и том же виде спорта (например, в борьбе или тяжелой атлетике) можно встретить спортсменов с весом тела менее 50 и свыше 150 кг. Двигательные возможности этих спортсменов будут разными.

При одинаковом уровне тренированности люди большего веса могут проявлять большую силу действия. С этим, в частности, связано деление на весовые категории в таких видах спорта, как борьба, бокс, тяжелая атлетика.

Для сравнения силовых качеств людей различного веса обычно пользуются понятием «относительная сила», под которым понимают величину силы действия, приходящейся на 1 кг собственного веса. Силу действия, которую спортсмен проявляет в каком-либо движении безотносительно к собственному весу, иногда называют абсолютной силой:

У людей примерно одинаковой тренированности, но разного веса абсолютная сила с увеличением веса возрастает, а относительная падает (рис.). Аналогичные закономерности наблюдаются и в отношении некоторых других функциональных показателей (например, максимального потребления кислорода – МПК). В то же время, скажем, высота подъема ОЦТ в прыжках или дистанционная скорость бега не зависят от тотальных размеров тела, а максимальная частота движений и стартовое ускорение уменьшаются с их увеличением.

20. Роль созревания в онтогенезе моторики

Онтогенезом моторики называется изменение движений и двигательных возможностей человека на протяжении его жизни. Новорожденный – существо, не владеющее даже простейшими движениями. С возрастом его двигательные возможности расширяются, достигают расцвета в молодости и постепенно снижаются к старости.

Роль созревания и научения в онтогенезе моторики:

Два основных фактора определяют развитие моторики – созревание и научение. Созреванием называются наследственно обусловленные изменения анатомического строения и физиологических функций организма, происходящие в течение жизни человека: увеличение размеров и изменение формы тела ребенка в процессе его роста, изменения, связанные с половым созреванием, старением и др. В раннем детстве громадное значение имеет дозревание нервно-мышечного аппарата (в частности, коры больших полушарий головного мозга, которая к моменту рождения еще не сформировалась). В основных чертах двигательный аппарат ребенка формируется лишь к 2–2,5 годам. Под научением понимают освоение новых движений или совершенствование в них под влиянием специальной практики, обучения или тренировки. Таким образом, онтогенез моторики определяется взаимодействием созревания и научения. При попытках, в частности, раздельного обучения близнецов было показано, что сроки овладения некоторыми движениями (например, начало ходьбы) не изменялись под влиянием обучения и помощи; другие движения осваивались намного быстрее обычного (например, можно обучить ребенка катанию на роликовых коньках одновременно с началом ходьбы, а обучить плавать даже раньше, чем ходить). Однако иногда чрезмерно раннее обучение мешает овладению движением. Например, годовалые дети, ежедневно обучавшиеся в течение полугода езде на трехколесном велосипеде, хуже ездили на нем впоследствии из-за неправильных навыков и потери интереса, чем дети, которые впервые сели на велосипед в более позднем возрасте.

Двигательный возраст:

Если измерить результаты в каких-либо двигательных заданиях большой группы детей одного возраста, то можно определить средние достижения, которые они показывают. Зная затем результаты отдельного ребенка, можно установить, какому возрасту в среднем соответствует данный результат. Таким образом определяют двигательный возраст детей.

Конечно, не все дети одного и того же возраста показывают одинаковые результаты. Детей, у которых двигательный возраст опережает календарный, называют двигательными акселератами. Детей, у которых двигательное развитие отстает, называют двигательными ретардантами. Например, если подросток в возрасте 14 лет и 2 месяца прыгает в длину с места на 170 см, он двигательный ретардант (в этом упражнении), а если его результат более 210 см, – двигательный акселерат.

Прогноз развития моторики

При начальном выборе спортивной специализации, отборе в ДЮСШ и некоторые специальные школы (балетную, цирковую и др.) встает задача прогноза двигательной одаренности. Как порекомендовать ребенку именно тот вид спорта, в котором он сможет добиться наибольших успехов, как выявить наиболее одаренных? Для ответа на эти вопросы проводят научные исследования в двух основных направлениях:

а) изучение стабильности показателей моторики,

б) изучение наследственных влияний.

21. Биодинамика прыжка

В прыжках расстояние преодолевается полетом. При этом достигается либо наибольшая длина прыжка (прыжок в длину с разбега, тройной прыжок), либо наибольшая высота (прыжок в высоту с разбега, прыжок с шестом), либо значительная и длина и высота (опорный прыжок в гимнастике).

В разбеге решаются две задачи: создание необходимой скорости к моменту прихода на место отталкивания и создание оптимальных условий для опорного взаимодействия.

Отталкивание

Отталкивание от опоры в прыжках совершается за счет выпрямления толчковой нога, маховых движений рук и туловища. Задача отталкивания – обеспечить максимальную величину вектора начальной скорости ОЦМ и оптимальное ее направление. После отталкивания, в полете, тело спортсмена всегда совершает движения вокруг осей. Поэтому в задачи отталкивания входит также и начало управления этими движениями.

В полете траектория ОЦМ предопределена величиной и направлением вектора начальной скорости ОЦМ (углом вылета). Движения представляют собой движения звеньев вокруг осей, проходящих через ОЦМ. Задача сводится к возможно более дальнему приземлению, удерживая стопы как можно выше.

22. Движения центра масс системы

Центром масс называется точка, где пересекаются линии действия всех сил, не вызывающих вращение тела. В поле тяготения центр масс совпадает с центром тяжести. Положение общего центра масс тела определяется тем, где находятся центры масс отдельных звеньев. Для человека это зависит от его позы, т.е. пространственного положения элементов тела.

В человеческом теле около 70 звеньев, но для биомеханического моделирования чаще всего достаточно 15-звенной модели человеческого тела (например, голова, бедро, стопа, кисть и т.д.). Зная, каковы массы и моменты инерции звеньев тела и где расположены их центры масс, можно решить многие задачи биомеханики, в том числе:

определить импульс тела;

определить момент количества движения, при этом надо учитывать, что величины моментов относительно разных осей неодинаковы;

оценить, легко или трудно управлять скоростью тела или отдельного звена;

определить степень устойчивости тела и т.д.

23. Эффективность техники, ее виды

Эффективностью владения спортивной техникой (или эффективностью техники) того или иного спортсмена называется степень близости ее к наиболее рациональному варианту. Эффективность техники (в отличие от рациональности) – это характеристика не того или иного варианта техники, а качества владения техникой.

В зависимости от того, как определяется рациональная техника (образец, стандарт), различают три группы показателей ее эффективности.

Показатели абсолютной эффективности характеризуют близость к образцу, в качестве которого выбирается наиболее рациональный вариант техники, определенный на основе биомеханических, физиологических, психологических, эстетических соображений.

В простейшем случае мерой эффективности техники может явиться показанный спортсменом результат. Таким способом часто оценивают эффективность технических приемов в единоборствах и спортивных играх. Например, в баскетболе эффективность техники штрафных бросков естественно оценивать по проценту попаданий.

Сравнительная эффективность – В этом случае за образец берется техника спортсменов высокой квалификации. Те признаки техники, которые закономерно отличаются у спортсменов разной квалификации (т.е. изменяются с ростом спортивного мастерства), называются дискриминативными 1 призна­ками. Такие признаки эффективности техники используют в качестве основных показателей лишь тогда, когда техника движений очень сложна и на основе биомеханического анализа не удается определить ее наиболее рациональный вариант. В других случаях дискриминативные признаки дополняют показатели абсолютной эффективности, очень часто совпадая с ними.

При оценке эффективности техники с помощью дискриминативных признаков надо помнить, что техника даже выдающихся спортсменов может быть не вполне рациональной.

Реализационная эффективность (эффективность реализации) – Идея этих показателей состоит в сопоставлении показанного спортсменом результата либо с тем достижением, которое он по уровню развития своих двигательных качеств потенциально может показать (вариант «А»), либо с затратами энергии и сил при выполнении оцениваемого спортивного движения (вариант «Б»).

Вариант «А». В данном случае эффективность техники оценивается по тому, насколько хорошо спортсмен использовал в движении свои двигательные возможности. При таком подходе опираются на существование связей между тремя показателями: спортивным результатом, уровнем развития двигательных качеств, эффективностью техники.

Практически это осуществляется путем сравнения результатов спортсмена:

а) в технически сложном действии (как правило, это то движение, в котором специализируется спортсмен);

б) в технически более простых заданиях, требующих развития тех же двигательных качеств, что и основные.

24. Строение биомеханической системы

Для изучения опорно-двигательного аппарата человека как биомеханической системы необходимо последовательно рассмотреть строение этой системы и ее свойства. С точки зрения биомеханики опорно-двигательный аппарат – это управляемые биокинематические цепи (звенья и их соединения), оснащенные группами мышц. Вместе они выполняют задаваемые движения как биомеханизм.

Самой характерной чертой строения биомеханической системы считается его переменный характер. И число движущихся звеньев, и степени свободы движений, и состав мышечных групп, и их взаимодействия переменны.

Звенья биокинематических цепей

Биокинематические цепи опорно-двигательного аппарата состоят из подвижно соединенных звеньев (твердых, упругих и гибких) и отличаются их переменным составом, своей длиной и формой (составные рычаги и маятники).

Фиксирование суставов (блокада) и их освобождение (снятие динамических связей – тяги мышц) изменяют число движущихся звеньев в цепи. Она может превратиться как бы в одно звено или сохранять движение в части сочленений или во всех сочленениях.

Расстояние по прямой от проксимального сочленения до конца открытой цепи при ее сгибании-разгибании изменяется. Многозвенные маятники поэтому имеют переменную длину. Это влияет на величину инертного сопротивления (изменения момента инерции).

Биокинематические цепи, замыкаясь геометрически (связыванием между собой концевых звеньев), изменяют свои свойства (передача усилий, возможности управления). В частности, возникают составные рычаги со сложной передачей тяг многосуставных мышц. Твердые; Звенья (кости), упругие (мышцы) и гибкие (связки, сами мышцы; и их сухожилия), изменяя степень и характер своего участия в движениях, обеспечивают многообразные возможности движений.

Механизмы соединений

Механизмы соединений звеньев в биомеханических цепях и неодноосных сочленениях позволяют определять требуемое движение благодаря образованию биодинамически полносвязного механизма.

Биодинамически полносвязный механизм (биомеханизм) характеризуется выключением лишних в данном движении степеней свободы. Тяги групп мышц обеспечивают требуемое направление движений звеньев в биокинематических цепях и регулирование их скоростей. Кроме этого, мышцы при необходимости ограничивают и размах движений, затормаживая звенья раньше, чем наступает пассивное ограничение (костно-суставно-связочное).

Направление движений, скорости звеньев и размах движений в ряде суставов взаимосвязаны благодаря совместному действию многосуставных мышц.

25. Перемещающие движения

Перемещающимися в биомеханике называют движения, задача которых – перемещение какого-либо тела (снаряда, мяча, соперника, партнера). Перемещающие движения разнообразны. Примерами в спорте могут быть метания, удары по мячу, броски партнера в акробатике и т.п.

К перемещающим движениям в спорте обычно предъявляются требования достичь максимальных величин:

а) силы действия (при подъеме штанги), б) скорости перемещаемого тела, (в метаниях), в) точности (штрафные броски в баскетболе). Нередки и случаи, когда эти требования (например, скорости и точности) предъявляются совместно.

Среди перемещающих различают движения:

а) с разгоном перемещаемых тел (например, метание копья),

б) с ударным взаимодействием (например, удары в теннисе или футболе).

Поскольку большинство спортивных перемещающих движений связано с сообщением скорости вылета какому-нибудь снаряду (мячу, снаряду для метания), рассмотрим прежде всего механические основы полета спортивных снарядов.

Полет спортивных снарядов

Траектория (в частности, дальность) полета снаряда определяется:

а) начальной скоростью вылета,

б) углом вылета,

в) местом (высотой) выпуска снаряда,

г) вращением снаряда и

д) сопротивлением воздуха, которое, в свою очередь, зависит от аэродинамических свойств снаряда, силы и направления ветра, плотности воздуха (в горах, где атмосферное давление ниже, плотность воздуха меньше и спортивный снаряд при тех же начальных условиях вылета может пролететь большее расстояние).

26. Биомеханика ударных действий

Ударными в биомеханике называются действия, результат которых достигается механическим ударом. В ударных действиях различают:

1. Замах – движение, предшествующее ударному движению и приводящее к увеличению расстояния между ударным звеном тела и предметом, по которому наносится удар. Эта фаза наиболее вариативна.

2. Ударное движение – от конца замаха до начала удара.

3. Ударное взаимодействие (или собственно удар) – столкновение ударяющихся тел.

4. Послеударное движение – движение ударного звена тела после прекращения контакта с предметом, по которому наносится удар.

УЧЕБНИК ДЛЯ ВУЗОВ.

В.И. ДУБРОВСКИЙ, В.Н. ФЕДОРОВА

Москва


Рецензенты:

доктор биологических наук, профессор А.Г. Максина; доктор технических наук, профессор В.Д. Ковалев;

кандидат медицинских наук, лауреат Государственной премии СССР

И.Л. Баднин

Рисунки выполнены художником Н.М. Замешаевой

Дубровский В.И., Федорова В.Н.

Биомеханика: Учеб. для сред, и высш. учеб, заведений. — М.: Изд-во ВЛАДОС-ПРЕСС, 2003. — 672 с.: ил. ISBN 5-305-00101-3.

Учебник написан в соответствии с новой программой изучения биомеханики в высших учебных заведениях. Большое внимание уделено биомеханическому обоснованию применения средств физической культуры и спорта на примере различных видов спорта. Отражены современные подходы к оценке воздействия на технику спортсмена различных физических и климатических факторов, дана биомеханическая характеристика различных видов спорта. Впервые представлены разделы по медицинской биомеханике , биомеханике инвалидов-спортсменов, биомеханическому контролю локомоций и др.

Учебник адресован студентам факультетов физической культуры университетов, институтов физической культуры и медицинских вузов, а также тренерам, спортивным врачам, реабилитологам, занимающимся разработкой и прогнозированием тренировок, лечением и реабилитацией спортсменов и другим специалистам.

© Дубровский В.И., Федорова В.Н., 2003 © «Издательство ВЛАДОС-ПРЕСС», 2003 © Серийное оформление обложки. ISBN 5-305-00101-3 «Издательство ВЛАДОС-ПРЕСС», 2003


ПРЕДИСЛОВИЕ

Любая отрасль человеческих знаний, в том числе такая дисциплина как биомеханика, оперирует некоторым набором исходных определений, понятий и гипотез. С одной стороны, используются фундаментальные определения из математики, физики, общей механики. С другой — биомеханика базируется на данных экспериментальных исследований, важнейшими из которых являются оценка различных видов двигательной деятельности человека, управления ими; определение свойств биомеханических систем при различных способах деформирования; результаты, полученные при решении медико-биологических задач.

Биомеханика находится на стыке разных наук: медицины, физики, математики, физиологии, биофизики, вовлекая в свою сферу различных специалистов, таких как инженеры, конструкторы, технологи, программисты и др.

Биомеханика спорта как учебная дисциплина изучает как движения человека в процессе выполнения физических упражнений, во время соревнований, так и движения отдельных спортивных снарядов.

Существенное значение в современном спорте и физической культуре придается механической прочности, устойчивости тканей опорно-двигательного аппарата, органов, тканей к многократным физическим нагрузкам, особенно при тренировках в экстремальных условиях (среднегорье, высокая влажность, низкая и высокая температура, гипотермия, изменение биоритмов) с учетом телосложения, возраста, пола, функционального состояния человека. Все эти данные могут быть использованы в совершенствовании методики и техники выполнения тех или иных упражнений и тренировочных систем, а также в совершенствовании инвентаря, экипировки и других факторов.

Физическая культура и спорт в нашей стране в последнее десятилетие утратили свое влияние. Это никак не способствует укреплению здоровья человека. Это также сказывается в виде снижения способности противостоять негативным факторам окружающей среды.

Значение спорта во все времена было существенным в предупреждении преждевременного старения, в восстановлении функциональных возможностей организма после болезней и травм.

С развитием науки медицина активно внедряет ее достижения, разрабатывая новые методы лечения, оценки их эффективности, новые методики диагностики. Это, в свою очередь, обогащает спортивную медицину и физическую культуру. В данном учебнике предложены знания физических основ многих вопросов спортивной медицины, которые необходимы преподавателю физкультуры, тренеру, спортивному врачу, массажисту. Эти знания не менее важны, чем знания основ тренировочного процесса. В зависимости от того, как понимается физическая сущность того или иного направления спортивной медицины, в совокупности с медицинскими аспектами можно прогнозировать, дозировать оздоровительный (лечебный) эффект, а также уровень спортивных достижений.

В лечебной физической культуре применяются различные физические упражнения, реализуемые в том или ином виде спорта.

В данном учебнике, по сравнению с ранее вышедшими, впервые для биомеханики спорта изложен материал, показывающий применение законов фундаментальной физики ко многим конкретным направлениям этой дисциплины. Рассмотрены вопросы: кинематика, динамика материальной точки, динамика поступательного движения, виды сил в природе, динамика вращательного движения, неинерциальные системы отсчета, законы сохранения, механические колебания, механические свойства. Представлен большой раздел, показывающий физические основы воздействия различных факторов (механических, звуковых, электромагнитных, радиационных, тепловых), понимание физической сущности которых совершенно необходимо для рационального решения многих задач спортивной медицины.

Профессор В.И. Дубровский и профессор В.Н. Федорова помимо биомеханических методов контроля лиц, занимающихся физкультурой и спортом, представили биомеханические показатели в норме и при патологии (травмы и заболевания опорно-двигательного аппарата, при утомлении и др.), а также при тренировке в экстремальных условиях, у инвалидов-спортсменов и др.

Многие вопросы освещены авторами с учетом развития спорта высших достижений, инвалидного спорта, биомеханики спортивной травмы, различных возрастных периодов развития, с учетом телосложения и техники выполнения тех или иных упражнений в различных видах спорта.

В книге показаны основные направления в развитии биомеханики с использованием современных методов контроля: стационарный и дистанционный контроль за локомоциями; разработка современных технологий инвентаря, экипировки; техники выполнения физических упражнений в различных видах спорта; контроль за выполнением упражнений инвалидами-спортсменами; биомеханический контроль при травмах и заболеваниях опорно-двигательного аппарата и др.

По существу, в каждой главе учебника авторы подчеркивают, что, чтобы успешно выступать на соревнованиях, спортсмен должен владеть рациональной техникой выполнения упражнения, понимая его медико-физическую сущность, должен быть оснащен современной экипировкой, спортинвентарем, должен быть хорошо подготовлен функционально и здоров.

Особое место в учебнике отведено влиянию интенсивных физических нагрузок на структурные (морфологические) изменения в тканях опорно-двигательного аппарата, особенно если несовершенна техника выполнения физических упражнений и методы ее коррекции. Отмечено, что реакция тканей ОДА на физические нагрузки во многом зависит от техники выполнения упражнений, телосложения, возраста, функционального состояния, климато-географических факторов и т. п.

Авторы большое внимание уделяют возможностям использования математических и физических моделей как для различных упражнений, так и для отдельных участков и систем организма человека, в частности, спортсмена, а также тела в целом, для прогнозирования реакций организма на физические нагрузки и различные неблагоприятные факторы воздействия внешней среды. Телосложение, возраст важны для расчетной и модельной оценки пределов переносимости этих воздействий с учетом разнообразных дополнительных факторов.

У нас в стране и за рубежом до сих пор нет учебника, где были бы систематизированы материалы как по теоретическим физико-математическим основам биомеханики спорта, так и по биомеханике в норме и при патологии, с учетом возраста, пола, телосложения и функционального состояния лиц, занимающихся физкультурой и спортом. Особенно это важно при занятии спортом высших достижений, где требования к технике выполнения упражнений исключительные, и малейшие отклонения ведут к травматизму, иногда к инвалидности, снижению спортивных результатов.

Учебник «Биомеханика» отвечает современным требованиям, предъявляемым к учебникам по медико-биологическим дисциплинам, единым для педагогических, медицинских вузов и институтов физической культуры.

Большое количество информационных таблиц, рисунков, схем, однотипное и четкое разделение материала по структуре в каждой главе, выделенные лаконичные определения делают излагаемый материал очень наглядным, интересным, легко воспринимаемым и запоминаемым.

Этот учебник позволит студентам, тренерам, врачам, методистам ЛФК, преподавателям физкультуры лучше познать основы спортивной биомеханики, спортивной медицины, лечебной физкультуры, а следовательно, успешно и активно использовать их в своей работе. Этот учебник может быть рекомендован знатокам прикладной механики, специализирующимся по биомеханике.

Заведующий кафедрой теоретической механики Пермского государственного технического университета,

доктор технических наук, профессор, заслуженный деятель науки Российской Федерации

Ю.И. Няшин


ВВЕДЕНИЕ

Биомеханика движений человека представляет собой одну из частей более общей дисциплины, кратко называемой «биомеханика».

Биомеханика — это раздел биофизики, в котором изучаются механические свойства тканей, органов и систем живого организма и механические явления, сопровождающие процессы жизнедеятельности. Пользуясь методами теоретической и прикладной механики, эта наука исследует деформацию структурных элементов тела, течение жидкостей и газов в живом организме, движение в пространстве частей тела, устойчивость и управляемость движений и другие вопросы, доступные указанным методам. На основе этих исследований могут быть составлены биомеханические характеристики органов и систем организма, знание которых является важнейшей предпосылкой для изучения процессов регуляции. Учет биомеханических характеристик дает возможность строить предположения о структуре систем, управляющих физиологическими функциями. До последнего времени основные исследования в области биомеханики были связаны с изучением движений человека и животных. Однако сфера приложения этой науки прогрессивно расширяется; сейчас она включает в себя также изучение дыхательной системы, системы кровообращения, специализированных рецепторов и т. д. Интересные данные получены при изучении эластичного и неэластичного сопротивления грудной клетки, движений газов через дыхательные пути. Предпринимаются попытки обобщенного подхода к анализу движения крови с позиций механики сплошных сред, в частности, изучаются упругие колебания сосудистой стенки. Доказано также, что с точки зрения механики структура сосудистой системы оптимальна для выполнения своих транспортных функций. Реологические исследования в биомеханике обнаружили специфические деформационные свойства многих тканей тела: экспоненциальную нелинейность связи между напряжениями и деформациями, существенную зависимость от времени и т. д. Полученные знания о деформационных свойствах тканей помогают решению некоторых практических задач, в частности, они используются при создании внутренних протезов (клапаны, искусственное сердце, сосуды и пр.). Особенно плодотворно применяется классическая механика твердого тела в изучении движений человека. Часто под биомеханикой понимают именно это ее приложение. При изучении движений биомеханика использует данные антропометрии, анатомии, физиологии нервной и мышечной систем и других биологических дисциплин. Поэтому часто, может быть, в учебных целях, в биомеханику ОДА включают его функциональную анатомию, а иногда и физиологию нервно-мышечной системы, называя это объединение кинезиологией.

Количество управляющих воздействий в нервно-мышечной системе огромно. Тем не менее, нервно-мышечная система обладает удивительной надежностью и широкими компенсаторными возможностями, способностью не только многократно повторять одни и те же стандартные комплексы движений (синергии), но и выполнять стандартные произвольные движения, направленные на достижение определенных целей. Помимо способности организовать и активно заучивать необходимые движения, нервно-мышечная система обеспечивает приспособляемость к быстро меняющимся условиям окружающей и внутренней среды организма, изменяя применительно к этим условиям привычные действия. Эта вариативность имеет не только пассивный характер, но обладает чертами активного поиска, осуществляемого нервной системой, когда она добивается наилучшего решения поставленных задач. Перечисленные способности нервной системы обеспечиваются переработкой в ней информации о движениях, которая поступает по обратным связям, образованным сенсорной афферентацией. Деятельность нервно-мышечной системы отражается во временной, кинематической и динамической структурах движения. Благодаря этому отражению становится возможным, наблюдая механику, получить информацию о регуляции движений и ее нарушениях. Такой возможностью широко пользуются при диагностике заболеваний, в нейрофизиологических исследованиях с помощью специальных тестов при контроле двигательных навыков и обученности инвалидов, спортсменов, космонавтов и в ряде других случаев.


Глава 1 ИСТОРИЯ РАЗВИТИЯ БИОМЕХАНИКИ

Биомеханика — одна из самых старых ветвей биологии. Ее истоками были работы Аристотеля и Галена, посвященные анализу движений животных и человека. Но только благодаря работам одного из самых блистательных людей эпохи Возрождения — Леонардо да Винчи (1452—1519) — биомеханика сделала свой следующий шаг. Леонардо особенно интересовался строением человеческого тела (анатомией) в связи с движением. Он описал механику тела при переходе из положения сидя к положению стоя, при ходьбе вверх и вниз, при прыжках и, по-видимому, впервые дал описание походок.

Р. Декарт (1596—1650) создал основу рефлекторной теории, показав, что причиной движений может быть конкретный фактор внешней среды, воздействующий на органы чувств. Этим объяснялось происхождение непроизвольных движений.

В дальнейшем большое влияние на развитие биомеханики оказал итальянец Д. Борелли (1608—1679) — врач, математик, физик. В своей книге «О движении животных» по сути он положил начало биомеханике как отрасли науки. Он рассматривал организм человека как машину и стремился объяснить дыхание, движение крови и работу мышц с позиций механики.

Биологическая механика как наука о механическом движении в биологических системах использует в качестве методического аппарата принципы механики.

Механика человека есть новый раздел механики, изучающий целенаправленные движения человека.

Биомеханика — это раздел биологии, изучающий механические свойства живых тканей, органов и организма в целом, а также происходящие в них механические явления (при движении, дыхании и т. д.).

Леонардо ДО Винчи И.П. Павлов

П.Ф. Лесгафт Н.Е. Введенский

Первые шаги в подробном изучении биомеханики движений были сделаны лишь в конце XIX столетия немецкими учеными Брауном и Фишером (V. Braune, О. Fischer), которые разработали совершенную методику регистрации движений, детально изучили динамическую сторону перемещений конечностей и общего центра тяжести (ОЦТ) человека при нормальной ходьбе.

К.Х. Кекчеев (1923) изучал биомеханику патологических походок, используя методику Брауна и Фишера.

П.Ф. Лесгафтом (1837—1909) создана биомеханика физических упражнений, разработанная на основе динамической анатомии. В 1877 г. П.Ф. Лесгафт начал читать лекции по этому предмету на курсах по физическому воспитанию. В Институте физического образования им. П.Ф. Лесгафта этот курс входил в предмет «физическое образование», а в 1927 г. был выделен в самостоятельный предмет под названием «теория движения» ив 1931 г. переименован в курс «Биомеханика физических упражнений».

Большой вклад в познание взаимодействия уровней регуляции движений внес Н.А. Бернштейн (1880— 1968). Им дано теоретическое обоснование процессов управления движениями с позиций общей теории больших систем. Исследования Н.А. Бернштейна позволили установить чрезвычайно важный принцип управления движениями, общепризнанный в настоящее время. Нейрофизиологические концепции Н.А. Бернштейна послужили основой формирования современной теории биомеханики движений человека.

Идеи Н.М. Сеченова о рефлекторной природе управления движениями путем использования чувствительных сигналов, получили развитие в теории Н.А. Бернштейна о кольцевом характере процессов управления.

B.C. Гурфинкель и др. (1965) клинически подтвердили это направление, выявили принцип синергии в организации работы скелетной мускулатуры при регуляции вертикальной позы, а Ф.А. Северин и др. (1967) получили данные о спинальных генераторах (мотонейронах) локомоторных движений. R. Granit (1955) с позиции нейрофизиологии дал анализ механизмов регуляции движений.

R. Granit (1973) отметил, что организация ответов на выходе в конечном счете определяется механическими свойствами двигательных (моторных) единиц (ДЕ) и специфической иерархией процессов активации — включением медленных или быстрых ДЕ, тонических или фазических мотонейронов, альфа-моторного или альфа-гамма-контроля.

Н.А. Бернштейн А.А. Ухтомский

И.М. Сеченов А.Н. Крестовников

Большой вклад в биомеханику спорта внесли R.G. Osterhoud (1968); Т. Duck (1970), R.M. Brown; J.E. Counsilman (1971); S. Plagenhoef (1971); C.W.Buchan (1971); Dal Monte et.al. (1973); M.Saito et al. (1974) и многие другие.

У нас в стране изучение координации движений человека ведется с двадцатых годов XX столетия. Проводились исследования всей биомеханической картины координационной структуры произвольных движений человека с целью установления общих закономерностей, определяющих как центральную регуляцию, так и деятельность мышечной периферии в этом важнейшем жизненном процессе. С тридцатых годов XX века в институтах физкультуры в Москве (Н.А. Бернштейн), в Ленинграде (Е.А. Котикова, Е.Г. Котельникова), в Тбилиси (Л.В. Чхаидзе), в Харькове (Д.Д. Донской) и других городах стала развиваться научная работа по биомеханике. В 1939 г. вышло учебное пособие Е.А. Котиковой «Биомеханика физических упражнений» и в последующие годы в учебники и учебные пособия стал входить раздел «Биомеханическое обоснование спортивной техники по различным видам спорта».

Из биологических наук в биомеханике более других использовались научные данные по анатомии и физиологии. В последующие годы большое влияние на становление и развитие биомеханики как науки оказали динамическая анатомия, физика и физиология, особенно учение о нервизме И.П. Павлова и о функциональных системах П.К. Анохина.

Большой вклад в изучение физиологии двигательного аппарата внес Н.Е. Введенский (1852—1922). Им выполнены исследования процессов возбуждения и торможения в нервной и мышечной тканях. Его работы о физиологической лабильности живых тканей и возбудимых систем, о парабиозе имеют огромное значение для современной физиологии спорта. Большую ценность представляют также его работы о координации движений.

По определению А.А. Ухтомского (1875—1942), биомеханика исследует «каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение». Им показано, что сила мышц при прочих равных условиях зависит от поперечного сечения. Чем больше поперечное сечение мышцы, тем больше она в состоянии поднять груз. А.А. Ухтомский открыл важнейшее физиологическое явление — доминанту в деятельности нервных центров, в частности, при двигательных актах. Большое место в его работах отведено вопросам физиологии двигательного аппарата.

Вопросы физиологии спорта разрабатывал А.Н. Крестовиков (1885—1955). Они были связаны с выяснением механизма мышечной деятельности, в частности, координации движений, формирования двигательных условных рефлексов, этиологии утомления при физической деятельности и другими физиологическими функциями при выполнении физических упражнений.

М.Ф. Иваницкий (1895—1969) разработал функциональную (динамическую) анатомию применительно к задачам физкультуры и спорта, т. е. определил связь анатомии с физкультурой.

Успехи современной физиологии, и, в первую очередь, труды академика П.К. Анохина дали возможность с позиции функциональных систем по-новому взглянуть на биомеханику движений.

Все это дало возможность обобщить физиологические данные с биомеханическими исследованиями и подойти к решению важных вопросов биомеханики движений в современном спорте, спорте высших достижений.

В середине XX века ученые создали протез руки, управляемый электрическими сигналами, поступающими из нервной системы. В 1957 г. у нас в стране была сконструирована модель руки (кисти), которая выполняла биоэлектрические команды типа «сжать— разжать», а в 1964 г. создан протез с обратной связью, т. е. протез, от которого непрерывно поступает в ЦНС информация о силе сжатия или разжатия кисти, о направлении движения руки и тому подобных признаках.

П.К. Анохин

Американские специалисты (E.W. Schrader и др., 1964) создали протез ноги, ампутированной выше колена. Была изготовлена гидравлическая модель коленного сустава, позволяющая добиться естественной ходьбы. Конструкция предусматривает нормальную высоту подъема пятки и вытягивание ноги при ее отводе независимо от скорости ходьбы.

Бурное развитие спорта в СССР послужило основанием развития биомеханики спорта. С 1958 г. во всех институтах физической культуры биомеханика стала обязательной учебной дисциплиной, создавались кафедры биомеханики, разрабатывались программы, издавались учебные пособия, учебники, проводились научно-методические конференции, готовились специалисты.

Как учебный предмет биомеханика выполняет несколько ролей. Во-первых, с ее помощью студент вводится в круг важнейших физико-математических понятий, которые необходимы для расчетов скорости, углов отталкивания, массы тела, расположения ОЦТ и его роли в технике выполнения спортивных движений. Во-вторых, эта дисциплина имеет самостоятельное применение в спортивной практике, потому что представленная в ней система двигательной деятельности с учетом возраста, пола, массы тела, телосложения позволяет выработать рекомендации для работы тренера, учителя физкультуры, методиста лечебной физкультуры и др.

Биомеханические исследования позволили создать новый тип обуви, спортивного инвентаря, оборудования и техники управления ими (велосипеды, горные и прыжковые лыжи, гоночные лыжи, лодки для гребли и многое другое).

Изучение гидродинамических характеристик рыб и дельфинов дало возможность создать специальные костюмы для пловцов, изменить технику плавания, что способствовало повышению скорости плавания.

Биомеханику преподают в высших физкультурных учебных заведениях во многих странах мира. Создано международное общество биомехаников, проводятся конференции, симпозиумы, конгрессы по биомеханике. При Президиуме Российской академии наук создан научный Совет по проблемам биомеханики с секциями, охватывающими проблемы инженерной, медицинской и спортивной биомеханики.


Глава 2 ТОПОГРАФИЯ ТЕЛА ЧЕЛОВЕКА. ОБЩИЕ ДАННЫЕ О ТЕЛЕ ЧЕЛОВЕКА

Тело человека представляет собой с точки зрения механики объект величайшей сложности. Оно состоит из частей, которые с большой степенью точности можно считать твердыми (скелет) и деформируемых полостей (мышцы, сосуды и пр.), причем в этих полостях содержатся текучие и фильтрующиеся среды, не обладающие свойствами обычных жидкостей.

Тело человека в общих чертах сохраняет строение, свойственное всем позвоночным: двуполярность (головной и хвостовой концы), двустороннюю симметрию, преобладание парных органов, наличие осевого скелета, сохранение некоторых (реликтовых) признаков сегментарности (метамерии) и т. п. (рис. 2.1).

К другим морфофункциональным особенностям тела человека относятся: высокополифункциональная верхняя конечность; ровный ряд зубов; развитый головной мозг; прямохождение; пролонгированное детство и др.

В анатомии принято изучать тело человека в вертикальном положении с сомкнутыми нижними и опущенными верхними конечностями.

В каждой части тела выделяют области (рис. 2.2, а, б) головы, шеи, туловища и двух пар верхних и нижних конечностей (см. рис. 2.1,6).

Рис. 2.1. Сегментарное деление спинного мозга. Формирование сплетений из корешков мозга (а). Сегментарная инвервация органов и функциональных систем (б)

На туловище человека обозначают два конца — черепной, или краниальный и хвостовой, или каудальный и четыре поверхности — брюшную, или вентральную, спинную, или дорсальную и две боковых — правую и левую (рис. 2:3).

На конечностях определяют по отношению к туловищу два конца: проксимальный, т. е. более близкий и дистальный, т. е. отдаленный (см. рис. 2.3).

Оси и плоскости

Тело человека построено по типу двубоковой симметрии (оно делится срединной плоскостью на две симметричные половины) и характеризуется наличием внутреннего скелета. Внутри тела наблюдается расчленение на метамеры, или сегменты, т. е. образования однородные по строению и развитию, расположенные в последовательном порядке, в направлении продольной оси тела (например, мышечные, нервные сегменты, позвонки и пр.); центральная нервная система лежит ближе к спинной поверхности туловища, пищеварительная — к брюшной. Как и все млекопитающие, человек имеет молочные железы и покрытую волосами кожу, полость его тела разделена диафрагмой на грудной и брюшной отделы (рис. 2.4).

Рис. 2.2. Области тела человека:

а — передняя поверхность: 7 — теменная область; 2 — лобная область; 3 — область глазницы; 4 — область рта; 5 — подбородочная область; б — передняя область шеи; 7 — латеральная область шеи; 8 — область ключицы; 9 — ладонь кисти; 10 — передняя область предплечья; 11 — передняя локтевая область; 12 — задняя область плеча; 13 — подмышечная область; 14 — грудная область; 15 — подреберная область; 16— надчревная область; 17— пупочная область; 18— боковая область живота; 19 — паховая область; 20 — лобковая область; 21 — медиальная область бедра; 22 — передняя область бедра; 23 — передняя область колена; 24 — передняя область голени; 25 — задняя область голени; 26 — передняя голеностопная область; 27 —тыл стопы; 28 — пяточная область; 29 — тыл кисти; 30 — предплечье; 31 — задняя область предплечья; 32 — задняя локтевая область; 33 — задняя область плеча; 34 — задняя область предплечья; 35 — область молочной железы; 36 — дельтовидная область; 37 — ключично-грудной треугольник; 38 — подключичная ямка; 39 — грудино-ключично-сосцевидная область; 40 — область носа; 41 — височная область.

Рис. 2.3. Взаимное положение частей в человеческом теле

б — задняя поверхность: 1 — теменная область; 2 — височная область; 3 — лобная область; 4 — область глазницы; 5 — скуловая область; б — щечная область; 7 — поднижнечелюстной треугольник; 8 — грудино-ключично-сосцевидная область; 9—акромиальная область; 10— межлопаточная область; 11 —лопаточная область; 12 — дельтовидная область; 13 — боковая грудная область; 14 — задняя область плеча; 15 — подреберная область; 16 — задняя локтевая область; 17 — задняя область предплечья; 18 — передняя область предплечья; 79 — ладонь кисти; 20 — пяточная область; 21 — подошва стопы; 22 — тыл стопы; 23 — передняя область голени; 24 — задняя область голени; 25 — задняя область колена; 26 — задняя область бедра; 27—заднепроходная область; 28 — ягодичная область; 29 — крестцовая область; 30 — боковая область живота; 31 — поясничная область; 32 — подлопаточная область; 33 — позвоночная область; 34 — задняя область плеча; 35 — задняя локтевая область; 36 — задняя область предплечья; 37 — тыл кисти; 38 — передняя область плеча; 39 — надлопаточная область; 40 — задняя область шеи; 41 — затылочная область

Рис. 2.4. Полости тела

Рис. 2.5. Схема осей и плоскостей в теле человека:

1 — вертикальная (продольная) ось;

2 — фронтальная плоскость; 3 — горизонтальная плоскость; 4 — поперечная ось; 5 — сагиттальная ось; 6 — сагиттальная плоскость

Чтобы лучше ориентироваться относительно взаимного положения частей в человеческом теле, исходят из некоторых основных плоскостей и направлений (рис. 2.5). Термины «верхний», «нижний», «передний», «задний» относятся к вертикальному положению тела человека. Плоскость, делящая тело в вертикальном направлении на две симметричные половины, именуется срединной. Плоскости, параллельные срединной, называются сагиттальными (лат. sagitta — стрела); они делят тело на отрезки, расположенные в направлении справа налево. Перпендикулярно срединной плоскости идут фронтальные, т. е. параллельные лбу (фр. front — лоб) плоскости; они рассекают тело на отрезки, расположенные в направлении спереди назад. Перпендикулярно срединной и фронтальной плоскости проводятся горизонтальные, или поперечные плоскости, разделяющие тело на отрезки, расположенные друг над другом. Сагиттальных (за исключением срединной), фронтальных и горизонтальных плоскостей можно провести произвольное количество, т. е. через любую точку поверхности тела или органа.

Терминами «медиально» и «латерально» пользуются для обозначения частей тела по отношению к срединной плоскости: medialis — находящийся ближе к срединной плоскости, lateralis — дальше от нее. С этими терминами не надо смешивать термины «внутренний» — interims и «наружный» — externus, которые употребляются только по отношению к стенкам полостей. Слова «брюшной» — ventralis, «спинной» — dorsalis, «правый» — dexter, «левый» — sinister, «поверхностный» — superficial, «глубокий» — profundus не нуждаются в объяснении. Для обозначения пространственных отношений на конечностях приняты термины «proximalis» и «distalis», т. е. находящийся ближе и дальше от места соединения конечности с туловищем.

Для определения проекции внутренних органов проводят ряд вертикальных линий: переднюю и заднюю срединные — соответственно сечениям срединной плоскости; правую и левую грудинные— по боковым краям грудины; правую и левую срединноключичные — через середину ключицы; правую и левую окологрудинные — посередине между грудиной и срединноключичной; правую и левую переднеподкрыльцовые — соответственно переднему краю подкрыльцовой ямки; правую и левую срединноподкрыльцовые — исходящие из глубины одноименной ямки; правую и левую заднеподкрыльцовые — соответственно заднему краю подкрыльцовой ямки; правую и левую лопаточные — через нижний угол лопатки; правую и левую околопозвоночные — посередине между лопаточной и задней срединной линиями (соответствует верхушкам поперечных отростков).

Краткие данные о центре тяжести тела человека

Функция нижних конечностей человека, если исключить многие физические упражнения, определяется главным образом опорой (положение стоя) и локомоцией (ходьба, бег). И в том, и в другом случае на функцию нижних конечностей, в отличие от верхних, имеет значительное влияние общий центр тяжести (ОЦТ) тела человека (рис. 2.6).

Рис. 2.6. Расположение общего центра тяжести при различных видах стояния: 1 — при напряженном; 2 — при антропометрическом; 3 — при спокойном

Во многих задачах механики удобно и допустимо рассматривать массу какого-то тела так, как будто она сконцентрирована в одной точке — центре тяжести (ЦТ). Поскольку нам предстоит анализировать силы, действующие на тело человека во время выполнения физических упражнений и стоя (покой), нам следует знать, где находится ЦТ у человека в норме и при патологии (сколиоз, коксартроз, ДЦП, ампутации конечности и др.).

В общей биомеханике важным является изучение расположения центра тяжести (ЦТ) тела, его проекции на площадь опоры, а также пространственного соотношения между вектором ЦТ и различными суставами (рис. 2.7). Это позволяет изучать возможности блокировки суставов, оценить компенсаторные, приспособительные изменения в опорно-двигательном аппарате (ОДА). У взрослых мужчин (в среднем) ОЦТ располагается на 15 мм позади от передне-нижнего края тела V поясничного позвонка. У женщин ЦТ в среднем располагается на 55 мм спереди от передне-нижнего края I крестцового позвонка (рис. 2.8).

Во фронтальной плоскости ОЦТ незначительно (на 2,6 мм у мужчин и на 1,3 мм у женщин) смещен вправо, т. е. правая нога принимает несколько большую нагрузку, чем левая.

Рис. 2.7. Виды положения тела человека стоя: 1 — антропометрическое положение; 2 — спокойное положение; 3 — напряженное положение: Кружок с точкой в центре, находящийся в области таза, показывает положение общего центра тяжести тела; в области головы — положение центра тяжести головы; в области кисти — положение общего центра тяжести кисти. Черные точки показывают поперечные оси суставов верхней и нижней конечностей, а так же атланто-затылочного сустава

Рис. 2.8. Расположение центра

тяжести (ЦТ): а — у мужчин; б — у женщин

Общий центр тяжести (ОЦТ) тела слагается из центров тяжести отдельных частей тела (парциальные центры тяжести) (рис. 2.9). Поэтому при движениях и перемещении массы частей тела перемещается и общий центр тяжести, но для сохранения равновесия его проекция не должна выходить за пределы площади опоры.

Рис. 2.9. Расположение центров тяжести отдельных частей тела

Рис. 2.10. Положение общего центра тяжести тела: а — у мужчин одинакового роста, но различного телосложения; б—у мужчин разного роста; в — у мужчин и женщин

Высота положения ОЦТ у разных людей значительно варьирует в зависимости от целого ряда факторов, к числу которых в первую очередь относятся пол, возраст, телосложение и пр. (рис. 2.10).

У женщин ОЦТ обычно "располагается несколько ниже, чем у мужчин (см. рис. 2.8).

У детей раннего возраста ОЦТ тела расположен выше, чем у взрослых.

При изменении взаимного расположения частей тела, проекция его ОЦТ также меняется (рис. 2.11). Меняется при этом и устойчивость тела. В практике спорта (обучение упражнениям и тренировки) и при выполнении упражнений лечебной гимнастики этот вопрос очень важен, так как при большей устойчивости тела можно выполнять движения с большей амплитудой без нарушения равновесия.

Рис. 2.11. Положение общего центра тяжести при различных положениях тела

Устойчивость тела определяется величиной площади опоры, высотой расположения ОЦТ тела и местом прохождения вертикали, опущенной из ОЦТ, внутри площади опоры (см. рис. 2.7). Чем больше площадь опоры и чем ниже расположен ОЦТ тела, тем больше устойчивость тела.

Количественным выражением степени устойчивости тела в том или ином положении является угол устойчивости (УУ). УУ называется угол, образованный вертикалью, опущенной из ОЦТ тела и прямой, проведенной из ОЦТ тела к краю площади опоры (рис. 2.12). Чем больше угол устойчивости, тем больше степень устойчивости тела.

Рис. 2.12. Углы устойчивости при Рис. 2.13. Плечи силы тяжести по

выполнении упражнения «шпагат»: отношению к поперечным осям

а — угол устойчивости назад; вращения в тазобедренном, коленном

р — угол устойчивости вперед; и голеностопном суставах опорной

Р — сила тяжести ноги конькобежца

(по М.Ф. Иваницкому)

Вертикаль, опущенная из ОЦТ тела, проходит на некотором расстоянии от осей вращения суставов. В связи с этим сила тяжести в любом положении тела имеет по отношению к каждому суставу определенный момент вращения, равный произведению величины силы тяжести на ее плечо. Плечом силы тяжести является перпендикуляр, проведенный из центра сустава к вертикали, опущенной из ОЦТ тела (рис. 2.13). Чем больше плечо силы тяжести, тем больший момент вращения она имеет по отношению к суставу.

Масса частей тела определяется различными способами. Если у разных людей абсолютная масса частей тела будет значительно различаться, то относительная масса, выраженная в процентах, достаточно постоянна (см. табл. 5.1).

Очень большое значение имеют данные о массе частей тела, а также о расположении парциальных центров тяжести и моментов инерции в медицине (для конструирования протезов, ортопедической обуви и т. п.) и в спорте (для конструирования спортивного инвентаря, обуви и т. п.).

Организм, орган, система органов, ткани

Организмом называется всякое живое существо, основными свойствами которого являются: постоянный обмен веществ и энергии (внутри себя и с окружающей средой); самообновление; движение; раздражаемость и реактивность; саморегулирование; рост и развитие; наследственность и изменчивость; приспособляемость к условиям существования. Чем сложнее устроен организм, тем в большей мере он сохраняет постоянство внутренней среды — гомеостаз (температура тела, биохимический состав крови и др.) независимо от меняющихся условий внешней среды.

Эволюция происходила под знаком двух противоположных тенденций: дифференциации, или разделения тела на ткани, органы, системы (с соответствующим и одновременным разделением и специализацией функций), и интеграции, или объединения частей в целостный организм.

Органом называют более или менее обособленную часть организма (печень, почка, глаз и т. д.), выполняющую одну или несколько функций. В образовании органа принимают участие различные по строению и физиологической роли ткани, возникшие в течение длительной эволюции как совокупность приспособительных механизмов. Одни органы (печень, поджелудочная железа и др.) имеют сложное строение, причем каждый их компонент выполняет свою функцию. В других случаях составляющие тот или иной орган (сердце, щитовидная железа, почка, матка и др.) клеточные структуры подчинены выполнению единой сложной функции (кровообращение, мочеотделение и др.).

Механизм управления двигательными действиями человека (на стадии формирования новых двигательных навыков) был обоснован еще в 30-40 гг. XX столетия Н.А. Бернштейном. Затем академик П.К. Анохин разработал теоретические положения о функцио­нальной системе, которые объясняют действия данного механизма (схема 15.2).

Описать это можно так. Человек при выполнении нового дви­жения создает себе (на основе его цели и содержания) опреде­ленный образ будущего движения. По мере выполнения движения происходит его сличение с программой управления, а также осу­ществляются последовательные его коррекции (так называемые сенсорные коррекции).


Механизм управления позволяет выделить три стадии форми­рования движения.

Первая стадия - формируется общее представление о дви­жении при участии мышц, осуществляющих движение, мышц-ан­тагонистов и других мышц (участие которых в освоенном движении не требуется); поэтому человек выполняет движение (движения) излишне напряженно, тем самым значительно уменьшая скорость его выполнения. Если на этой стадии движения выполнять в быст­ром темпе, то сенсорные коррекции затруднительны или невоз­можны.

Вторая стадия - исчезает напряженность и возникает дос­таточно четкая мышечная координация при выполнении постоян­ных движений. Движение пока еще не выполняется свободно и ав-томатизированно.

Третья стадия - используются реактивные силы, силы инер­ции, движения становятся более экономичными, их выполнение доводится до автоматизма.

На основании общих теоретических представлений о формиро­вании движения в теории физического воспитания (для всех ви­дов спорта) в процессе обучения выделяют три этапа.

Первый этап - начальное разучивание движения (вырабаты­вается умение воспроизводить технику в общей, «грубой» форме).

Второй этап - углубленное, детализированное разучивание движения (движений).

Третий этап - дальнейшее совершенствование двигательно­го навыка.

В практике спорта обучение и тренировка двигательного навыка предполагают многократное повторение однотипного (однотипных) движения (упражнения), с учетом возраста, пола и технической подготовленности, координированности, гибкости спортсмена. В последние годы все шире применяются технические средства обучения (лонжи, блоки, пояса, зеркала, различные тренажеры и т. д.). В некоторых видах спорта (спортивная гимнастика, акроба­тика, прыжки в воду с трамплина и др.) используют метод фикси­рованного положения, когда останавливают движение и фиксируют его в определенной позе. Этот метод наиболее доступен для на­чального периода обучения, он позволяет быстрее и эффектив­нее разучить кинематику движений, уточнить положение звеньев тела, контроль за динамикой и общим ритмом движения (дви­жений).



Важным при обучении и на тренировках является учет такого фактора как адаптация. Адаптация к физическим нагрузкам (уп­ражнениям) во всех случаях представляет собой реакцию целого организма, однако специфические изменения в тех или иных функ­циональных системах могут быть выражены в различной степени.

Исходя из учения П.К. Анохина о функциональных системах следует, что организм реагирует на воздействие внешней среды как целое, деятельность одних органов и систем теснейшим обра­зом связана с функцией других (см. схему 15.2).

Ходьба в норме

Ходьба - автоматизированный двигательный акт, осуществ­ляющийся в результате сложной координированной деятельности скелетных мышц туловища и конечностей.

Отталкиваясь от почвы, нога приводит тело в движение - впе­ред и несколько вверх и вновь совершает размах в воздухе.

Последовательность положения конечности взрослого челове­ка при ходьбе показана на рис. 15.16. При ходьбе тело поочередно опирается то на правую, то на левую ногу.


Акт ходьбы отличается чрезвычайно точной повторяемостью от­дельных его компонентов, так что каждый из них представляет точную копию в предыдущем шаге.

В акте ходьбы деятельное участие принимают также верхние конечности человека: при выносе вперед правой ноги правая рука движется назад, а левая - выносится вперед. Руки и ноги челове­ка При ходьбе совершают движения в противоположных направ­лениях.

Движение отдельных звеньев свободной ноги (бедра, голени и стопы) определяется не только сокращением мышц, но и инер­цией. Чем ближе звено к туловищу, тем меньше его инерция и тем раньше оно может последовать за туловищем. Так, бедро свобод­ной ноги перемещается вперед раньше всего, поскольку оно бли­же всего к тазу. Голень, будучи дальше от таза, отстает, что ведет к сгибанию ноги в колене. Точно так же отставание стопы от голе­ни вызывает сгибание в голеностопном суставе (см. рис. 15.16).

Последовательное вовлечение мышц в работу и точная коорди­нация их сокращений при ходьбе обеспечиваются у человека ЦНС и главным образом корой больших полушарий головного мозга. С точки зрения нервного механизма, ходьба представляет собой автоматизированный цепной рефлекс, в котором афферентная им-пульсация, сопровождающая каждый предыдущий элемент движе­ния, служит сигналом для начала следующего.

Функциональный анализ ходьбы. Ходьба - это сложное цик­лическое локомоторное действие, одним из основных элементов которого является шаг (рис. 15.17).

При ходьбе, как и при других видах локомоторного движения, пере­мещение тела в пространстве происходит благодаря взаимодействию внутренних (сокращение мышц) и внешних (масса тела, сопротивле­ние опорной поверхности и др.) сил. В каждом шаге, совершаемом правой и левой ногой, различают период опоры и период маха. Наи­более характерной особенностью всех видов ходьбы по сравнению с бегом и прыжками является постоянное опорное положение одной ноги (период одиночной опоры) или двух ног (период двойной опо­ры). Соотношение этих периодов обычно равно 4:1. Как период опоры, так и период маха может быть разделен на две основные фа­зы, а именно: период опоры - на фазы переднего толчка и заднего толчка, разделенные моментом вертикали; маха - фазы заднего ша­га и переднего шага, между которыми также находится момент вер­тикали.



Фаза переднего толчка. После заключительной фазы перед­него шага начинается постановка стопы на почву при почти выпрямленном, но не закрепленном коленном суставе и согнутом, слегка отведенном и супинированном бедре. Стопа становится на опорную поверхность пяткой, после чего она совершает двойной перекат: с пятки на носок и снаружи внутрь. Этот перекат проис­ходит под влиянием силы тяжести тела и последовательного вклю­чения в работу короткой малоберцовой мышцы, поднимающей на­ружу край стопы и далее мышц - длинной малоберцовой, задней болынеберцовой, длинного сгибателя большого пальца стопы и длинного сгибателя пальцев, поддерживающих продольную ду­гу (свод) стопы. Такое движение стопы имеет двоякое значение: увеличение длины шага и растягивание мышц заднего отдела голе­ни, участвующих в отталкивании тела. В начальном периоде опоры приобретает большое значение рессорная функция, выполняемая суставами стопы и незакрепленным суставом колена. Далее под действием тяжести и инерции тела нога несколько сгибается в ко­ленном суставе и разгибается в голеностопном суставе при ус­тупающей работе четырехглавой мышцы и мышц заднего отдела голени, что еще более повышает буферные свойства конечности.

Момент вертикали. К моменту вертикали нога выпрямляется и приводится за счет сокращения большей части мышц бедра и от­части под влиянием силы тяжести. В это время стопа опирается на грунт всей подошвой, причем большинство ее мышц своим со­кращением способствует сохранению сводов и участвует в функ­ции удержания равновесия тела.

Фаза заднего толчка тела (отталкивание от опорной поверх­ности). В связи с этим контактирующая с грунтом конечность уд­линяется за счет разгибания во всех ее суставах. В тазобедренном суставе вновь происходит некоторое отведение, но в отличие от переднего толчка, сопровождаемое небольшим поворотом бедра (внутрь). Ведущая роль в этой фазе принадлежит четырехглавой, полусухожильной, полуперепончатой, длинной головке двуглавой и главным образом ягодичным мышцам.

Фаза заднего шага. В начале этой фазы (непосредственно по­сле окончания заднего толчка) маховая нога находится в поло­жении разгибания, некоторого отведения и поворота внутрь, что приводит к повороту таза вместе с туловищем в противополож­ную сторону. Из этого положения нога, производящая шаг, начи­нает совершать сгибание в тазобедренном и коленном суставах,



дополняемое незначительным поворотом ее наружу, что взаимо­связано с вращением таза в сторону маховой ноги. В это время основная нагрузка падает на мышцы: подвздошно-поясничную, при­водящие, заднего отдела бедра и отчасти на разгибатели стопы.

Момент вертикали. Маховая нога выпрямлена в тазобедрен­ном суставе и достигает максимального сгибания (по сравнению с другими фазами) в суставе колена. Сокращены главным образом мышцы заднего отдела бедра.

В фазе переднего шага мышцы заднего отдела бедра расслаб­ляются и благодаря силе инерции и кратковременному балли­стическому сокращению четырехглавой мышцы голень выбрасы­вается вперед. После этого начинается новый цикл движения.

Центр тяжести тела (ЦТ) при ходьбе (рис. 15.18, а) наряду с по­ступательными движениями (вперед), совершает еще движения бо­ковые и в вертикальном направлении. В последнем случае размах (вверх и вниз) достигает величины 4 см (у взрослого человека), при этом туловище опускается больше всего именно тогда, когда одна нога опирается всей подошвой, а другая вынесена вперед. Боковые движения (качания в стороны) центра тяжести доходят до 2 см.

Колебания ОЦТ тела в стороны связаны с перемещением на опорную ногу всей массы тела, благодаря чему траектория ОЦТ тела проходит непосредственно над площадью опоры. Чем ходьба быстрее, тем эти колебательные движения меньше, что объясня­ется влиянием инерции тела.

Размер шага в среднем принимается за 66 см, при спокойной ходьбе продолжительность его - около 0,6 сек.

Помимо мышц нижних конечностей при ходьбе включаются в ди­намическую работу почти все мышцы туловища, шеи и верхних ко­нечностей.

В связи с последовательным чередованием растяжения, сокра­щения и расслабления различных мышечных групп, что происходит во время ходьбы, значительная нагрузка на всю мышечную систе­му обычно не вызывает выраженного утомления. В значительной мере это также объясняется тем, что ритмические движения всего тела облегчают нормальную вентиляцию легких и улучшают крово­обращение всех органов, включая центральную нервную систему (ЦНС). Таким образом, ходьба - это наилучший вид физической тренировки.

Кинематические и динамические характеристики челове­ка между продольными осями смежных сегментов конечности



можно измерять (так называемые межзвенные углы). На рис. 15.18 приведены графики межзвенных углов в тазобедренном суставе (ТБС), коленном (КС), голеностопном (ГСС) и плюснефаланговом (ПФС) при ходьбе в норме.

Характерной особенностью графиков этих углов (ангулограмм) является довольно стабильная периодичность. У разных людей ме­няются только продолжительность периода и диапазон изменений угла (амплитуда). В норме эти амплитуды составляют: в ТБС 26- 30°; в КС в опорный период шага 12-15°; в переносный период - 55-62°; в ГСС подошвенное сгибание равно 17-20°; тыльное - 8-10°. В ПФС всегда имеется тыльное сгибание при переносе (10-12°), при опоре сначала идет выпрямление до 0°, а при зад­нем толчке (от заднего толчка опорной ноги тело устремляется впе­ред) в ПФС снова происходит сгибание до 10-12°.

При ходьбе человек взаимодействует с опорной поверхностью, при этом возникают силовые факторы, называемые главным век­тором и главным моментом сил реакции опоры. Типичные графи­ки вертикальной и продольной составляющих главного вектора опорной реакции при ходьбе в произвольном темпе в норме пред­ставлены на рис. 15.18. Для графика вертикальной составляющей главного вектора опорной реакции характерно наличие двух вер­шин, соответствующих переднему (опора на пятку) и заднему (от­талкивание передним отделом стопы) толчкам. Амплитуды этих вершин превышают массу человека и достигают 1,1 - 1,25Р - масса человека).

Продольная составляющая главного вектора сил реакции опор имеет тоже две вершины разных знаков: первая, соответствующая переднему толчку, направлена вперед; вторая, соответствующая заднему толчку, направлена назад. Так оно и должно быть - от­талкиваясь опорной ногой, человек устремляет все тело вперед. Максимумы продольной составляющей главного вектора опорной реакции достигает 0,25Р.

Есть еще одна составляющая главного вектора опорной реак­ции - поперечная. Она возникает при переступании с одной ноги на другую и ее максимум достигает 8-10% от массы человека.

Временная структура шага. Локомоции человека - процесс периодический, в котором через приблизительно равные промежут­ки времени повторяются сходные положения тела. Наименьшее время, прошедшее от данного положения до его повторения, явля­ется временем цикла. При ходьбе и беге время цикла называют по


числу сделанных шагов «временем двойного шага». Каждая нога в своем циклическом движении находится либо на опоре, либо пе­реносится на новое место опоры (рис. 15.19).

При беге момент опоры меньше момента переноса; наблюдает­ся период свободного полета над опорой (см. рис. 15.19).



effenergy.ru - Тренировки, питание, экипировка